
Search and Join Algorithms for Tables in Data Lakes

by

Erkang Zhu

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy

Graduate Department of Computer Science
University of Toronto

c© Copyright 2019 by Erkang Zhu

Abstract

Search and Join Algorithms for Tables in Data Lakes

Erkang Zhu

Doctor of Philosophy

Graduate Department of Computer Science

University of Toronto

2019

Data lakes are repositories of data sets stored in their raw formats. Data lakes can be dumping

grounds if users cannot find and utilize the data in them. In this thesis, we describe two problems in

managing data lakes: searching for tables that can be joined, and auto-generating syntactic transforma-

tions for joining tables with join values of different formats. Given a query table and a join column, the

first problem is defined as searching for tables that can be joined with the query table on the join column.

Our contributions toward solving this problem are twofold: 1) an approximate search index (based on

locality sensitive hashing) to support threshold-based search queries – find tables that can join with more

than a threshold percentage of the distinct join values in the query table; and 2) an exact search index

that supports top-k search queries – find the best k tables that cover the largest number of distinct join

values. Both approaches use new data-aware optimizations to provide interactive query performance

over real data lakes with millions of tables including many large tables (e.g., millions of rows). Ours

is the first approach for searching for joinable tables and we show that it greatly outperforms previous

approaches for computing set intersection (used for key-word search and other applications). We also

published open source implementations of the joinable table search algorithms and benchmarks created

using real data lakes. For the second problem, we propose a technique that generates transformations,

without human input, for joining tables with different formats on the join columns. The technique uses

a novel approach to pinpoint highly promising joinable row pairs, before using the pairs as input/output

examples to perform a greedy search to find a good transformation. The technique scales to tables as

large as 10K rows while still maintaining interactive speed. The solutions presented in this thesis make

data lakes more searchable and usable, and allow data scientists to be efficient. These experimentally-

validated solutions also create an avenue for new data science discoveries that are important in business

and government decision-making.

ii

Acknowledgements

I am thankful for the unrelenting support of my supervisor, Professor Renée J. Miller, who has pro-

vided much-needed guidance in my progression from a tentative student in the graduate field of data

management to a more experienced researcher. She fosters a creative and collaborative environment in

the lab. She taught me how to best communicate research ideas in research paper and presentation and

spent numerous hours discussing my (sometimes far-fetched) research ideas. Outside the lab, she is a

genuine, nice and humorous person and friend.

I would also like to thank my collaborators at the University of Toronto, Professor Ken Q. Pu and

my lab mate, Fatemeh Nargesian, for their continuous mentorship and support throughout my five years

at the school. Our collaboration started with the development of the LSH Ensemble algorithm in the

beginning of my PhD, and continued on today with five significant publications and a Best Demo Award.

Opportunities were afforded to me to participate in collaborations outside of the Data Curation

Lab. I am indebted to two fantastic individuals at Microsoft Research, Yeye He and Surajit Chaudhuri.

Without their involvement, I would not have had the chance to contribute the Auto-Join algorithm to

Azure Machine Learning Data Prep. This exposure helped me better understand the relevant industry

problems that exist in data management.

I am fortunate to have worked with Professor Dong Deng of Rutgers University. He introduced me

to the field of set similarity search and was a diligent collaborator. Together, we held countless intensive

brainstorming sessions during the development of the JOSIE algorithm.

Last but not least, I am grateful to my committee members, Professor Aleksandar Nikolov and

Professor Ken Q. Pu, and my reviewers, Professor Felix Naumann at Hasso Plattner Institute and

Professor Kelly Lyons at the University of Toronto. They were the earliest readers of this thesis and

their contributions, commitments and critiques cannot be understated.

iii

Contents

1 Introduction 1

1.1 On Data Lakes, Tables, and Open Data . 1

1.2 On Joining Tables in Data Lakes . 2

1.3 On Searching for Joinable Tables . 5

1.4 On Joins with Transformations . 7

1.5 On Contributions . 8

2 LSH Ensemble: Approximate Joinable Table Search 9

2.1 Metric for Joinable Tables . 9

2.1.1 Containment as Relevance Measure . 11

2.1.2 Jaccard vs. Containment . 12

2.2 The Threshold Containment Search Problem . 12

2.3 Locality Sensitive Hashing for Sets . 13

2.3.1 Minwise Hashing . 13

2.3.2 Locality Sensitive Hashing . 13

2.3.3 Asymmetric Minwise Hashing . 15

2.4 The LSH Ensemble Index . 16

2.4.1 Translating Containment to Jaccard . 17

2.4.2 Jaccard Similarity Filtering for Containment . 17

2.4.3 Partitioning to Reduce False Positives . 19

2.4.4 A Cost Model for Containment Search . 20

2.4.5 Estimation of False Positives . 20

2.4.6 Optimal Partitioning . 21

2.4.7 Threshold Containment Search Using Dynamic LSH 23

2.5 Experiments . 25

2.5.1 Data Lakes . 25

2.5.2 Benchmarks . 25

2.5.3 Algorithms . 26

2.5.4 Accuracy . 27

2.5.5 Query Performance . 29

2.5.6 Scalability . 32

2.6 Related Work . 32

2.7 Summary . 34

iv

3 JOSIE: Exact Top-K Joinable Table Search 35

3.1 The Top-K Overlap Set Similarity Search Problem . 35

3.2 Inverted Index, Prefix Filter, and Position Filter . 37

3.2.1 Inverted Index and Dictionary . 37

3.2.2 Prefix Filter . 38

3.2.3 Token Ordering and Position Filter . 39

3.3 A New Framework . 41

3.3.1 To Read or Not to Read . 41

3.3.2 Reading Candidates . 42

3.3.3 Reading Posting Lists . 44

3.3.4 An Adaptive Algorithm . 46

3.4 A Practical Search Engine . 48

3.4.1 Distinct Posting Lists . 48

3.4.2 Indexing Data Lakes . 49

3.4.3 Estimating Costs . 51

3.5 Experiments . 52

3.5.1 Data Lakes . 52

3.5.2 Query Benchmarks . 53

3.5.3 Setup . 53

3.5.4 Algorithms . 53

3.5.5 Open Data Results . 54

3.5.6 Webtable Results . 56

3.5.7 Comparison with LSH Ensemble . 58

3.5.8 Measuring Query Memory Footprint . 59

3.6 Related Work . 61

3.7 Summary . 62

4 Auto-Join: Smart Join with Transformations 63

4.1 Equi-Join Is Not Enough . 63

4.2 Related Work . 65

4.3 Problem Overview . 66

4.4 Auto-Join by Transformations . 68

4.4.1 Finding Joinable Row Pairs . 68

4.4.2 Transformation Learning . 75

4.4.3 Join with Composite Key Columns . 79

4.5 Scale Auto-Join to Large Tables . 81

4.6 Constrained Fuzzy Join . 82

4.7 Experiments . 84

4.7.1 Benchmark Datasets . 84

4.7.2 Methods Compared . 86

4.7.3 Quality Comparison . 87

4.7.4 Scalability Evaluation . 90

4.8 Summary . 91

v

5 Conclusion 93

5.1 Other Contributions . 93

5.1.1 A Joinable Table Search System . 93

5.1.2 Open Source . 94

5.2 Lessons Learned . 95

5.2.1 The Two-Stage Design Principle of Retrieval Processes 95

5.2.2 Evaluate Using Real Data . 95

5.2.3 Use Simple Methods to Optimize for Performance 96

5.2.4 Rare Signals are Strong Signals . 96

5.3 Next Step: A Self-Service Data Discovery System . 97

5.3.1 Generalized Joinable Table Search . 97

5.3.2 Unionable Table Search . 98

5.4 An Outlook on Data Lake Management . 98

Bibliography 104

vi

List of Tables

1.1 Open Data portals with the most CSV tables (October 1, 2018) 2

1.2 Left: Homicide survey involving firearms; Right Number of police officers . . . 3

1.3 Join result of tables Homicide survey involving firearms and Number of police officers

on Year. 3

1.4 Sample tables and counts of tables joinable on at least 50% of rows, all from Canada Open

Data (March 2017). 5

1.5 Left: Homicide survey involving firearms; Right: Synthetic Historical Rainfall Data 7

2.1 Example query table (top) and candidate tables (bottom). 10

2.2 Candidate table: campaign contributions to individuals. 11

3.1 Characteristics of sets derived from three data lakes in comparison with other datasets

used in previous work. 36

3.2 Posting lists in Open Data and Web Tables. 48

3.3 Indexing benchmark sets using Apache Spark on a cluster of 3 worker nodes each with

100 GB of memory and 63 cores. 50

4.1 Notations for analyzing q-gram matches. 67

4.2 F-Scores on Synthetic Benchmark . 90

vii

List of Figures

1.1 An analysis of homicides in Canada involving firearms and number of employed police

officers, produced by joining tables Homicide survey, homicides involving firearms

and Number of police officers on years. 4

1.2 An analysis of Canadian corporations’ NSERC funding and political campaign contribu-

tions, produced by joining three tables: NSERC Partners 2004, NSERC Awards 2004, and

Campaign Contributions 2000-2004. 4

1.4 The number of tables (CSV only) in Open Data portals over time. 5

1.3 The join paths (edges) traversed starting from the yellow table (node) to the 4th degree

tables (nodes), within Canada Open Data. 6

2.1 The left plot uses b = 42 and r = 6, and the right plot uses b = 16 and r = 16; it is clear

that with threshold set to 0.5, the left setting is more optimal than the right one. 14

2.2 Impact of the maximum set size M ; |Q| = 100 . 16

2.3 Set size distributions of data lakes . 17

2.4 The exact (upper curve) and approximate (lower curve) translation functions from con-

tainment threshold t∗ to Jaccard similarity threshold s∗; and the shaded area correspond-

ing to the false positives introduced by the approximation translation function. 18

2.5 An example of using no partition versus two partitions . 19

2.6 P (t||X|, |Q|, b, r) - probability of becoming a candidate with respect to containment, given

|X| = 10, |Q| = 5, b = 256, and r = 4; containment threshold t∗ = 0.5 (dashed line) 24

2.7 Precision and recall on 1k query benchmark. 27

2.8 Precision and recall on 10k query benchmark. 29

2.9 Precision and recall on 100k query benchmark. 30

2.10 90 percentile query time (including post-processing to remove false positives) vs. threshold

(left plots) and query size (right plots); threshold is set to 0.6 for right plots. 31

2.11 Indexing and Mean Query Cost . 32

3.1 An example read sequence that alternates between reading posting lists and candidates.

Each set is a horizontal line, and each posting list is a vertical line, which connects common

tokens among sets. 42

3.2 The query set Q and candidate X after reading the posting list at position i. Pairs of

dots with solid lines represent intersecting tokens, pairs with dotted lines represent future

intersecting tokens, and non-intersecting tokens in both sets are not shown. 44

3.3 A read sequence of distinct posting lists. 49

viii

3.4 Estimating read costs of sets and posting lists using samples 52

3.5 Mean query time, Open Data benchmark. 54

3.6 Standard deviation of durations, mean number of set and posting lists read per query,

and query memory footprint on Open Data benchmark (k = 10). 55

3.7 Mean query time on WebTable benchmark. 56

3.8 The standard deviation, number of sets and posting lists read, and query memory footprint

on Web Table benchmark (k = 10). 57

3.9 Mean query time of LSH Ensemble (32 partitions, modified for top-k) and JOSIE on Open

Data benchmark. 58

3.10 The standard deviation, number of sets read and query memory footprint on Open Data

benchmark for k = 10. 59

4.1 An example of joinable tables with different formats on the key columns. (left): US

presidents and popular votes. (right): US presidents and job approval rating. The right

table uses last-name, comma, first-name, with (year-of-birth and year-of-death). 64

4.2 Another example of tables with different key column formats. (left): Name and job titles

in school. (right): Email and school districts. Email can be generated from name in the

left by concatenating first-initials, last-names, and @forsynth.k12.ga.us. 64

4.3 An example of tables from enterprise spreadsheets. (left): ATU name (for area team unit).

(right): Sub-ATU names organized under ATU. 65

4.4 Another example of tables from enterprise spreadsheets. (left): ID and session name in

separate fields. (right): Concatenated full session name. 65

4.5 Frequency vs. rank in log-log plots. Close-to-linear relationships in the plots show that

q-grams in Bing Web tables and Wikipedia tables also follow power laws, similar to what

people have observed in general natural language text [7, 29]. 70

4.6 Average precision/recall comparison for all methods on three benchmarks. 87

4.7 F-Scores on Enterprise Benchmark. 88

4.8 F-Scores on Web Table Benchmark. 89

4.9 End-to-end running time comparison . 91

5.1 A Joinable Table Search System . 94

5.2 The Architecture of a Data Lake Management System [50] 99

ix

Chapter 1

Introduction

To begin, we discuss how data lakes differ from traditional databases and data warehouses. We consider

the massive and important data being published by governments around the world as an example of a

data lake, an open data lake.

1.1 On Data Lakes, Tables, and Open Data

A data lake is a repository of data sets stored in their raw formats. Unlike a traditional data warehouse,

a data lake may not have a predefined schema, so the schema of a data set may be defined at read time.

This flexibility offers developers and data analysts the freedom to model and query data sets as they

need. However, the lack of a fixed schema means users may have limited knowledge about the data sets

that are available in a lake.

In data lakes, the table is the most popular data model for data sets. The table data model is also

widely used in data science and machine learning. A table typically consists rows of records, all of which

have the same set of attributes of a specific data type. A table can also be divided into columns, each

of which is an ordered sequence of attributes, each having a specific type of data values. Tables can

be stored in many different formats. Traditionally, comma-separated values (CSV), Javascript Object

Notation (JSON), and Extensible Markup Language (XML) are the common file formats for tables.

Column-oriented formats such as Apache Parquet are becoming popular in Big Data systems. In this

thesis, we do not attempt to compare physical file formats used to store the tables; rather, we consider

a table as a logical data model.

An important type of data lakes that has emerged in recent years is Open Data portals, which are

repositories of data sets published by governments for the purpose of transparency and their potential

to spur innovations for better governance and new economic development. Open Data portals typically

publish data sets through a catalog software called CKAN, which lists data sets with human-curated

metadata under various categories such as Health, Agriculture, and Economics, and which provides

limited keyword-based search on titles, tags and description. For the purpose of this thesis, we built

a crawler that downloads all data sets in CSV (comma-separated values) format from various CKAN

catalogs around the world. The statistics on these various catalogs are shown are shown in Table 1.1.

The numbers in Table 1.1 only reflects CSV files and not other formats that may contain tables

because CSV natively encodes a table, while other formats, such as XML and JSON, may require

1

Chapter 1. Introduction 2

Table 1.1: Open Data portals with the most CSV tables (October 1, 2018)

Portals URLs Number of CSV Files

European Data Portal www.europeandataportal.eu 258,200
U.S. Open Data www.data.gov 164,283
U.K. Open Data www.data.gov.uk 43,109
Canada Open Data open.canada.ca 36,442
Austria Open Data www.data.gv.at 21,395
Germany Open Data www.govdata.de 21,144
Japan Open Data www.data.go.jp 17,301
Brazil Open Data dados.rs.gov.br 15,740

schema-dependent transformations to properly identify a table. Nevertheless, even with only the CSV

formats, the number of tables is much larger than that in a typical database or data warehouse system

and is prohibitively time-consuming for a human to browse through.

1.2 On Joining Tables in Data Lakes

There are many possible operations that a data scientist may want to perform on tables in data lakes

in order to obtain interesting analysis. Examples of those operations are transformation, in which data

values in a table are converted to different representations (e.g., metric units to the imperial system);

union, in which records from different tables are unioned into a common schema (e.g., creating a master

rental listing crawled from different websites), and join, in which records from one table are merged with

records from another table (e.g., merging a table on rental listings with a table on public schools by

matching on the district name attribute). In this thesis, we focus on the join operation, which has the

power of discovering unknown tables for analysis. We will use Canadian Open Data as an example data

lake to demonstrate the power of join.

As an example, an analyst is interested in the firearm-related homicides in Canada. Assume she has

access to all the tables downloaded from the Canadian Open Data portal. Through a keyword-based

search on titles, she finds the table Homicide survey, homicides involving firearms (a real table1).

The table itself includes the following columns: Year, Type of Firearm, and Count. The analyst could

only obtain a time-based trend on different types of firearms and the counts of deaths associated with

them.

In order to expand her analysis of firearm homicides, the data scientist may want to find time-based

correlations of homicides with other variables in different tables. This option immediately requires

looking for other tables with different variables but the same Year column (or with a different precision

level such as Year-Month or Year-Month-Date), then applying a join operation to “combine” the tables

together, so that in the resulting table every record contains Year (or Year-Month and so on), Type of

Firearm, Count, and new columns from the other table.

In order to find tables with matching Year column, the analyst writes a computer program that scans

all tables in the data lake one by one. One interesting table, Number of police officers2, shows up,

and it contains a Year column and a column for the number of police officers. Both tables are shown in

Table 1.2.

1https://open.canada.ca/data/en/dataset/be073ee2-a302-4d32-af20-a48f5fbe2e63
2https://open.canada.ca/data/en/dataset/07dcaaf5-6a58-4ce3-8876-e30feefef8dd

Chapter 1. Introduction 3

Table 1.2: Left: Homicide survey involving firearms; Right Number of police officers

Year Type of Firearm Count ...

1974 Total firearms 283 ...
1974 Handgun 76 ...
1974 Rifle or shotgun 180 ...
...

Year ... Count

1974 ... 48075
1975 ... 50663
1976 ... 51193
...

Table 1.3: Join result of tables Homicide survey involving firearms and Number of police

officers on Year.

Year Type of Firearm Count Num. Police Officers

1974 Total firearms 283 48075
1974 Handgun 76 48075
1974 Rifle or shotgun 180 48075
1974
1975 Total firearms 292 50663
1975 Handgun 88 50663
1975 Rifle or shotgun 183 50663
1975

By joining these two tables on Year, the analyst obtains a very interesting result that showcases the

correlation between the number of police officers and the number of firearm-related homicides, as shown

in Table 1.3. Figure 1.1 shows one possible plot the analyst can generate. She can do further analysis

on which type of firearm has the most correlation, and look for more tables to join with to further her

analysis.

This case study shows the power of the join operation. However, we do not know how often joinable

tables occur in a data lake. One might think there are few joinable tables. Surprisingly, our analysis on

the Canadian Open Data shows that there are many: for every table in a random sample, the number

of tables joinable on at least 50% of rows are listed in Table 1.4:

From the random sample, one table, Poll-by-Poll Results 40th General Election, has columns

on vote counts for each candidate and poll location. By joining this table with other tables containing

social-economic data related to poll locations, one can potentially discover correlations between social-

economic factors and number of votes for each candidate.

Another table from the random sample, the NSERC Award Data 1993 contains the names of principal

investigators on NSERC granst and the amount of the grant. By joining this table with tables containing

additional information about principal investigators such as job positions, titles, age, and gender, one

can conduct a statistical analysis to find which characteristics of the principal investigators have the

highest impact on the funding amount that they receive.

As an additional example, we have conducted an analysis on the correlation between the donations of

Candidan companies to political campaigns and the total amount of NSERC funding that they receive.

The analysis is performed by joining three tables: NSERC Award Data 2004, NSERC Partners 2004,

and Campaign Contributions 2000-2004, and the result is shown in Figure 1.2. This plot shows a

correlation that could be studied by a data scientist to understand if there is an underlying causation.

As in our last example, we may wish to perform many joins starting from a query table like the table

Chapter 1. Introduction 4

1970 1975 1980 1985 1990 1995 2000 2005

150

200

250

300
Homicides in Canada

1970 1975 1980 1985 1990 1995 2000 2005

48000

50000

52000

54000

56000

Police Officers in Canada

Figure 1.1: An analysis of homicides in Canada involving firearms and number of employed police
officers, produced by joining tables Homicide survey, homicides involving firearms and Number

of police officers on years.

0 1000000 2000000 3000000 4000000 5000000

Total NSERC Award in 2004 (CAD)

0

5000

10000

15000

20000

25000

30000

T
ot

al
C

on
tr

ib
u

ti
on

20
00

-2
00

4
(C

A
D

)

Bell Canada

Bombardier Inc.

Cangene Corporation

Glaxo Wellcome Inc.

Kruger Inc.

Maxxam Analytics Inc.

Pfizer Canada Inc.

TimberWest Forest Corp.

Figure 1.2: An analysis of Canadian corporations’ NSERC funding and political campaign contribu-
tions, produced by joining three tables: NSERC Partners 2004, NSERC Awards 2004, and Campaign

Contributions 2000-2004.

Chapter 1. Introduction 5

Table 1.4: Sample tables and counts of tables joinable on at least 50% of rows, all from Canada Open
Data (March 2017).

Sampled Tables Num. Joinable Tables Num. Joinable Columns

International Merchandise Trade 2012-2016 77 323
NSERC Award Data 1993 40 246
Construction Union Wage Rates 14 398
Leisure Time Physical Activity 24 673
Poll-by-Poll Results 40th General Election 196 327

NSERC Award Data 2004. By repeatedly expanding our query table through join operations, we can

gather more data about the data we are studying. Figure 1.3 illustrates the richness of joinable paths in

the Canadian Open Data: we started from a single table (marked as the yellow node), and repeat the

operations of finding joinable tables tables (further green nodes), until 4 joins away from the starting

table. For this plot, we define joinability as complete containment. The dense connections in Figure 1.3

also show the potential for a data lake such as the Canadian Open Data to be used to augment an

existing table that an analyst has already found (or identified).

1.3 On Searching for Joinable Tables

The previous section has shown the potential benefit of joining tables in a data lake. However, we do

not yet know how to efficiently find joinable tables when the data lake contains hundreds of thousands

of tables. Data lakes of such size exist in some Open Data portals, as we have already seen earlier in

Table 1.1. Due to the large size, we want to avoid using linear scan to find joinable tables, and use a

sub-linear time search index instead. In addition, some data lakes are growing quickly. Figure 1.4 shows

the number of CSV files in some Open Data portals over time. For the European Open Data portal, the

number doubles every half-year. Thus, such rapid growth in the number of tables must be handled by

an efficient search index.

2013 2014 2015 2016 2017 2018 2019

Time

0

50000

100000

150000

200000

N
u

m
b

er
o
f

C
S

V
F

il
es

European Open Data

U.S. Open Data

U.K. Open Data

Canada Open Data

Figure 1.4: The number of tables (CSV only) in Open Data portals over time.

Chapter 1. Introduction 6

Figure 1.3: The join paths (edges) traversed starting from the yellow table (node) to the 4th degree
tables (nodes), within Canada Open Data.

Chapter 1. Introduction 7

A search index using schema-only information may be suitable for a data warehouse, which usually

makes complete (and rich) schema information available to its users. However, for a data lake, a user

may have limited or no knowledge of the schema. And the lake is likely too large to browse, as in the case

of Open Data portals. Even when the schema information is available to the user, it is likely incomplete

or insufficient to identify joinablity among tables. For example, two columns from two different tables

with the same name Year (or even worse, Date) may share few common values, thus cannot produce a

join result with enough rows to derive a meaningful analysis.

An alternative to using schema information is to pre-compute all pairs of joinable tables in a data

lake, and to build a search index that simply serves the computed pairs as a join graph [62, 26]. This

approach provides high performance, since it involves little computation; however, it only works for

finding joinable tables for existing tables within the data lake. If a user wants to input a new table

as the starting table, he/she still needs to perform an expensive linear scan. In addition, if a user has

joined multiple tables from the data lake and performed some data value transformations, the resulting

table may not have the same set of joinable tables as the original tables.

In this thesis, to build efficient search indexes for growing data lakes, we propose two approaches: one

uses a technique from approximate nearest neighbour search, and the other is an exact search algorithm

that provides a major innovation over solutions that use inverted indexes and set similarity search

algorithms. These approaches are presented in Chapter 2 and 3 of this thesis. Both of these approaches

use only data values, and compute the joinability of tables at search time rather than pre-compute

joinable pairs. Thus, they can be used for dynamic data lakes that grow over time.

1.4 On Joins with Transformations

So far, we have been only discussing equi-joins – joining rows by exact match of a pair of data values

in the join columns. However, equi-join is not the only type of join. As an example of a non-equi-join,

we use the table on firearm-related homicides and a table on historical rain falls; they are shown in

Table 1.5. Because both tables cover the same date ranges, if they could be joined, then the correlation

between historical homicides and rainfalls could be measured.

In order to perform the join, we have to first write a program that creates a new column Year in the

rain fall table by extracting the year component from the Year-Month column. After the join, we can

group the joined rows by Year, and then take the sum of Amount for each group to get the final result.

Table 1.5: Left: Homicide survey involving firearms; Right: Synthetic Historical Rainfall Data

Year Type of Firearm Count ...

1974 Total firearms 283 ...
1974 Handgun 76 ...
1974 Rifle or shotgun 180 ...
...

Year-Month ... Amount

1974-01 ... 48075
1974-02 ... 50663
1974-03 ... 51193
...

Data lake users are often forced to write syntactic transformation programs such as extracting the

Year from Year-Month because there are formatting differences among different data sources even for

the same class of data values. As an example of storing person names, some data sources use Firstname

Lastname, while some other sources use Lastname,Firstname. Another example is phone numbers: one

Chapter 1. Introduction 8

source starts nation code for phone numbers with +, while another source does not have + but instead

uses brackets around area codes. In addition to differences in formatting for the same value classes,

tables may use different but syntactically related unique identifiers. For example, one table extracted

from a sign-up sheet uses a person name column, Firstname Lastname as the identifier, while another

table extracted from a contact list uses an email column firstname.lastname@example.com.

Writing a transformation program is a small annoyance if it is only required once and can be used

repeatedly. Likely, the written transformation program cannot be applied to other cases of join. The

user would have to write a new program for every ad hoc join, and this task can become burdensome

without contributing to any useful analysis and understanding of the data.

In Chapter 4, we describe a technique for automatically generating transformation programs without

user input. This technique can save a lot of valuable time for data scientists working with data lakes,

and help them to focus on analytical tasks.

1.5 On Contributions

The primary goal of this thesis is to develop joinable table search algorithms that scale to massive data

lakes. Existing work on schema matching [2, 8] and inclusion dependency discovery [3, 52] focused on

databases and data warehouses, where the table schema is well-defined and the number of tables is small.

In contrast, Open Data data lakes can have hundreds of thousands of tables (see Table 1.1). More recent

work (work that follows our own work on joinable table search [74]), finds joinable tables in enterprise

data lakes using a pre-computed join graph [26], which can be expensive to maintain for data lakes that

grow quickly over time (see Figure 1.4) and are updated frequently. Existing exact and approximate set

similarity search algorithms [5, 69, 70, 60] may be used for joinable table search, but these algorithms

were not designed for very large tables, large differences in table sizes, and large dictionaries (meaning

a large number of distinct data values or vocabulary size) – all of which are common in data lakes.

Thesis Statement: Joinable table search can be done efficiently at runtime (without a pre-computed

join graph) even over data lakes with massive numbers of tables, large dictionaries, and tables of very

different sizes (including very large tables).

We present algorithms for searching for tables that can be joined in massive data lakes, and automat-

ically join them without writing ad hoc transformation programs. The algorithms: LSH Ensemble [74],

JOSIE [73], and Auto-Join [72] have all been published in the proceedings of the top-tier conferences

(VLDB and SIGMOD) and form important parts of the emerging literature on data lake management.

Beside algorithmic contributions, we also developed an interactive joinable table search system [75] (us-

ing LSH Ensemble as the search index) that won the Best Demo Award at VLDB 2017, released an

Open Source Python package3 for MinHash, LSH, and LSH Ensemble algorithms that has received over

800 stars to date, and published benchmark data sets4 for evaluating LSH Ensemble and JOSIE.

As data lakes become widely adopted, data management tasks (e.g., searching for tables, joining

tables, etc.) will require more hours from data scientists, who already dedicate 80% of their time in

data preparation [18]. The algorithms, systems, code, and benchmark data sets presented in this thesis

contribute to making data lake management effortless, and encourage future research.

3https://github.com/ekzhu/datasketch
4https://github.com/ekzhu/set-similarity-search-benchmarks

https://github.com/ekzhu/datasketch
https://github.com/ekzhu/set-similarity-search-benchmarks

Chapter 2

LSH Ensemble: Approximate

Joinable Table Search

In this chapter, we present the first approach for efficiently finding joinable tables over data lakes

containing a massive number of tables. To begin, we consider what is an appropriate measure for

judging whether two tables are “joinable” and whether one table is more joinable to a query table than

another (to permit ranking of search results). Give this definition of joinability, we then consider how it

can be used in an efficient search algorithm to find joinable tables, when these tables may have variable

sizes (varying from a few hundred rows to millions of rows). Our work, known as LSH Ensemble [74],

is built upon the theoretical foundation of data sketches and locality sensitive hashing, and our novel

search algorithm supports the joinability definition as the relevance measure.

As previously mentioned in Section 1.3, we focus on joinable table search algorithms that use only

data values, as schema and metadata may be incomplete or ambiguous in a data lake. In this and the

following chapters, we limit the scope further to syntactic techniques – ones that consider data values

to be simply string or byte tokens. Other techniques that leverage a semantic understanding of data,

by using a knowledge base, entity resolution, or machine learning are also interesting, but syntactic

techniques are simpler and more efficient, often used as building blocks for the more complex semantic

techniques. For example, in our collaboration with Nargesian et al. on unionable table search [51], we

use knowledge base annotations and word embeddings to pre-process tables, but like LSH Ensemble,

the search algorithm uses locality sensitive hashing, which is a classic syntactic technique for similarity

search.

2.1 Metric for Joinable Tables

Before describing the algorithm, we first define what constitutes a “good” joinable table. In Section 1.2

we have established that the user has an input table, and wants to find tables to join with this input

table. We now formalize this problem.

Definition 2.1.1. A query table is a table for which we want to find joinable tables through the search

index. A candidate table is any table containing a column on which when joined (using an equi-join

on a single attribute) with the query table the result is non-empty.

9

Chapter 2. LSH Ensemble: Approximate Joinable Table Search 10

Table 2.1: Example query table (top) and candidate tables (bottom).

(a) Query table: collaborative NSERC grants between Canadian universities and companies, sampled from the
join result of NSERC Award Data 2004 and NSERC Partners 2004, aggregated over amount.

Program Institution Partner Amount

Collaborative Research & Dev... University of Toronto Bell Canada 630,683
Research Networks University of Toronto Bell Canada 743,818
Research Networks Université du Québec Bell Canada 1,500,000
Industrial Research Chairs Université Laval Kruger Inc. 566,146
Industrial Research Chairs York University MDS SCIEX 300,000
Collaborative Research & Dev... McMaster University MDS SCIEX 321,967
Research Networks Université de Montréal Corner Brook ... 1,110,000
Research Networks Université Laval TimberWest ... 1,120,298
Stratigic Projects - Group University of British C... Dofasco Inc. 145,000
Idea to Innovation McMaster University Dofasco Inc. 134,450
Collaborative Research & Dev... University of British C... Barrick Gold ... 229,930
Research Networks University of Waterloo Cangene Corp... 451,613
Synergy Awards University of Manitoba Cangene Corp... 25,000
Stratigic Projects - Group Université de Shebrooke UMA Engineer... 347,300
Research Networks Université de Montréal Pfizer Canada Inc. 440,625

(b) Candidate table: campaign contributions from Bell
Canada only.

Recipient Contributor Amount

MARTIN,Paul Bell Canada 1,000
Day,Stockwell Bell Canada 1,000
Gagliano,Alfonso Bell Canada 1,000
Copps,Sheila Bell Canada 1,000
Manley,John Bell Canada 1,000
GOODALE,RALPH Bell Canada 1,000
CODERRE,DENIS Bell Canada 1,000
Clark,Joe Bell Canada 1,000
Rock,Allan Bell Canada 1,000
Tobin,Brian Bell Canada 500

(c) Candidate table: total campaign contributions
from all organizations in Table 2.1a except MDS
SCIEX.

Contributor Recipients Amount

Bell Canada 46 27,885.22
Kruger Inc. 10 20,800
Corner Brook ... 3 3,000
TimberWest ... 2 6,500
Dofasco Inc. 17 3,655
Barrick Gold ... 3 1224.34
Cangene Corp... 1 5,000
UMA Engineer... 3 5,500
Pfizer Canada Inc. 22 15,105

An example of a query table is Table 2.1a, and two possible candidate tables are the two tables

Tables 2.1b and 2.1c. In this case, the candidate tables can be joined with the query table by matching

records based on data values in Contributor column with Partner columns. We will call the column in

the query table on which we choose to do the join the query column and the column in the candidate

table on which we do the join the candidate column and collectively we call these two columns the

join columns.

In the example, the query column is Partner and the candidate columns are the two Contributor

columns. As shown in this example, the join columns do not have to be key columns, as in the case

of Contributor. In addition, an aggregation operation may be useful for non-key columns after (or

before) the join operation. In our example, we could do a GROUP BY to group the records in Table 2.1b

by Contributor and sum the Amount for each group.

Chapter 2. LSH Ensemble: Approximate Joinable Table Search 11

2.1.1 Containment as Relevance Measure

Now, what is a good metric we can use to rank candidate tables? The most obvious metric is the number

of records in the output of the join of the query and the candidate. Under this metric, the candidate

Table 2.1b generates 30 records, more than the 13 records by Table 2.1c. However, can we say the left

candidate is better than the right candidate? No, the right table is likely a better candidate than the

left table, for it covers more partners that are present in the query table. A data scientist would likely

prefer the right candidate to produce a more comprehensive analysis.

This intuition suggests that the number of unique values covered in the query column can be a proxy

for measuring the “goodness” of a candidate table. In order to express this quantitatively, we use the

following definition of containment.

Definition 2.1.2. For a query column Q and a candidate column X, the containment of X in Q is
|Q∩X|
|Q| , where |Q∩X| is the number of unique values shared between Q and X, and |Q| is the number of

unique values in Q.

In this chapter, we use containment as a relevance measure to rank candidate tables. We consider it

a good measure because it is not biased when the frequency of data values might be skewed as shown in

the previous example (Table 2.1b). The frequent data value Bell Canada contributes only a unit score

rather than a multiple of its frequency. Thus, this property of containment allows us to better rank

candidate tables that are joinable on a column that is not a key (i.e., containing data values that are

not unique).

To further demonstrate why containment helps to rank candidate tables joinable on non-key column

pairs, we use a new example candidate table, Table 2.2, on campaign contributions to individual recipi-

ents. This table contains a list of recipient-to-contributor relationships and associated amounts, and the

Contributor column is not a key column – its data values are not unique. To join this table with the

query table (Table 2.1a), the user may want to perform a GROUP BY transformation to compute the total

amount of every contributor; count the total number of recipients for every contributor; produce a table

that looks like Table 2.1c; and then perform the join operation. Now how do we compare Table 2.1c

and Table 2.2? The containment measure tells us that the containment of Contributor in Table 2.1c

is 90%, while the containment of Contributor in Table 2.2 is 50%, regardless of whether the user has

performed the GROUP BY transformation on Table 2.2. Thus, we can use the containment measure to say

that Table 2.1c should be ranked higher (more relevant) than Table 2.2.

Table 2.2: Candidate table: campaign contributions to individuals.

Recipient Contributor Amount

MARTIN,Paul Bell Canada 1,000

Day,Stockwell Bell Canada 1,000

Gagliano,Alfonso Bell Canada 1,000

Tobin,Brian Kruger Inc. 5,000

Chrétien,Jean Kruger Inc. 5,000

McBreairty,Peter Croner Brook ... 1,000

McKay,Ian TimberWest ... 4,000

Tobin,Brian Pfizer Canada Inc. 1,000

Chapter 2. LSH Ensemble: Approximate Joinable Table Search 12

Of course, containment is not the perfect measure in all usage cases – the user may also want as

many query table’s rows covered as possible by the join operation, or a higher fraction of covered rows.

In this respect, the containment measure based on sets (i.e., distinct values) provides a lower bound to

the row coverage, and a separate measure based on multi-sets would be required when the query column

is not a key.

2.1.2 Jaccard vs. Containment

The definition of containment is similar to that of Jaccard similarity, which has a slightly different

expression, |Q∩X||Q∪X| , differing by the denominator. Jaccard similarity is widely used in Computer Science,

and unlike containment, it is symmetric, making it work nicely with locality sensitive hashing, as we will

see in Section 2.3.

Jaccard similarity is not a suitable metric for ranking joinable tables, because it is biased against Q

and X that differ greatly in size. This can be demonstrated with the following example.

Q = {Ontario, Toronto}
X1 = {Alberta, Ontario, Manitoba}
X2 = {Illinois, Chicago, New York City, New York, Nova Scotia, Halifax,

California, San Francisco, Seattle, Washington, Ontario, Toronto}

(2.1)

The Jaccard similarity of Q and X1 is 0.25, while that of Q and X2 is 0.083. On the other hand, the

containment of Q and X1 is 0.5 while that of Q and X2 is 1.0. We can see that Jaccard similarity

favors columns with a smaller number of distinct values (i.e., set size). Containment, on the contrary, is

agnostic to the difference in the set sizes of the columns.

To compare Jaccard similarity with containment using real-world data lakes, we used columns from

Canada, US and UK Open Data (see Section: 2.5.2) with set size at least 10. We found 7,132,061 pairs

of columns having Jaccard similarity greater than 0.9, while there are 23,044,727 pairs of columns having

containment greater than 0.9 – more than 3 times more pairs. Furthermore, all of the Jaccard similarity

pairs can be found in the containment pairs. This result demonstrates the usefulness of containment

in finding joinable tables, and using Jaccard similarity can miss potentially important results, namely

tables that may contain most or all of the query column but are significantly larger. Such tables may

still be valuable to a data scientist.

So far, we have only discussed syntactic metrics that are strictly based on data values, and skipped

other metrics such as “relevance” judged by the data scientist. Searching for joinable tables under other

metrics is certainly important and part of our planned future research, and new techniques will likely use

syntactic measures as an essential component (e.g., for first stage filtering). For this thesis, we assume

the data scientist would go over the top candidate tables returned by the search index and decide whether

to join them.

2.2 The Threshold Containment Search Problem

As discussed in the previous section, we use containment as the metric for joinable table search. Con-

tainment is a real number in the range from 0.0 to 1.0, thus it is natural to define the search problem

Chapter 2. LSH Ensemble: Approximate Joinable Table Search 13

as a threshold search: find candidate columns that contain at least a threshold number of the values in

the query column.

Definition 2.2.1 (Threshold Containment Search Problem). Given a collection of columns Ω, the

containment function, |Q∩X||Q| , and a threshold t∗ ∈ [0, 1] on containment, find a set of relevant columns

from Ω defined as

{X :
|Q ∩X|
|Q| ≥ t∗, X ∈ Ω} (2.2)

Since we will only be dealing with the unique values in every column, we will also use Q and X for

the set of distinct values in the query and candidate columns respectively.

2.3 Locality Sensitive Hashing for Sets

To scale to massive data lakes containing very large columns (very large sets), our solution to the

threshold containment search problem (Definition 2.2.1) is built on the foundation of Minwise Hashing [9]

and LSH [36]. We present a brief overview of these two techniques, and a previous work, Asymmetric

Minwise Hashing [60], that utilizes Minwise Hashing and LSH for containment search.

2.3.1 Minwise Hashing

Broder [9] proposed a technique for estimating the Jaccard similarity between sets of any size. In this

technique, a set is converted into a MinHash signature using a set of minwise hash functions. For each

minwise hash function, its hash value is obtained by using an independently generated hash function

that maps all set values to integer hash values and returns the minimum hash value from the set. A

MinHash signature for X is then a set of its minimum hash values using a set of different hash functions.

Let h be one such hash function and the minimum hash value of a set X be hmin(X) and Y be

hmin(Y). Broder showed that the probability of the two minimum hash values being equal is the Jaccard

similarity of X and Y :

Pr[hmin(X) = hmin(Y)] = s(X,Y) (2.3)

where s(X,Y) is the Jaccard similarity function. Thus, given the signatures of X and Y , we can obtain

an unbiased estimate of the Jaccard similarity by counting the number of collisions in the corresponding

minimum hash values in two signatures and divide that by the total number of hash values in a single

signature.

2.3.2 Locality Sensitive Hashing

The Locality Sensitive Hashing (LSH) index was developed for general approximate nearest neighbor

search problems in high-dimensional spaces [36]. An LSH index requires a family of LSH functions. An

LSH function is a hash function whose collision probability is high for inputs that are close, and low

for inputs that are far-apart. The distance measure must be symmetric. A formal definition of LSH

functions can be found in the work of Indyk and Motwani [36].

The minwise hash function hmin belongs to the family of LSH functions for Jaccard distance, as

the probability of collision is equal to the Jaccard similarity. For simplicity, we call the LSH index for

Jaccard similarity MinHash LSH.

Chapter 2. LSH Ensemble: Approximate Joinable Table Search 14

0.0 0.2 0.4 0.6 0.8 1.0

s - Jaccard Similarity

0.0

0.2

0.4

0.6

0.8

1.0

P
(s
|b,
r)

0.0 0.2 0.4 0.6 0.8 1.0

s - Jaccard Similarity

Figure 2.1: The left plot uses b = 42 and r = 6, and the right plot uses b = 16 and r = 16; it is clear
that with threshold set to 0.5, the left setting is more optimal than the right one.

Next we explain how to build a MinHash LSH index. Assume we have a collection of MinHash

signatures of sets generated using the same set of minwise hash functions. The LSH divides each

signature into b “bands” of size r. For the i-th band, a function Hi = (hmin,1, hmin,2, . . . , hmin,r) is

defined, which outputs the concatenation of the minimum hash values in that band, namely, the values

hmin,1 to hmin,r. The function Hi maps a band in a signature to a bucket, so that signatures that agree

on band i are mapped to the same bucket.

Given the signature of a query set, LSH maps the signature to buckets using the same functions

H1, . . . ,Hb. The sets whose signatures map to at least one bucket where the query signature is mapped

are the candidates. These candidates are returned as the query result. Hence, the search time complexity

of the LSH only depends on the number of minwise hash functions (or the signature size) and is sub-linear

with respect to the number of sets indexed.

The probability of a set being a candidate is a function of the Jaccard similarity s between the query

and the candidate. Given the parameters b and r, the probability is:

Pr[s|b, r] = 1− (1− sr)b (2.4)

Given a threshold on Jaccard similarity, we want the sets that meet the threshold to have high probability

of becoming candidates, while those do not meet the threshold to have low probability. This can be

achieved by adjusting the parameters b and r.

Figure 2.1 demonstrates an example of different settings of b and r affecting the accuracy. The

threshold is 0.5, which is shown as the vertical dashed line at the center of both plots. The shaded

area left of the threshold line represents the false positive probability, which is the likelihood of a set

not meeting the threshold but being returned as a candidate; the shaded area right of the threshold line

represents false negative probability, which is the total likelihood of a set meeting the threshold but not

being returned as a candidate. In this case, the left setting is more optimal, as it has lower total false

positive and negative probabilities.

LSH has been used widely in applications requiring the fast estimation of the Jaccard measure (or

Chapter 2. LSH Ensemble: Approximate Joinable Table Search 15

other symmetric similarity measures) over large sets of MinHash signatures [9]. However, until recently,

it had not been used with asymmetric measures like containment.

2.3.3 Asymmetric Minwise Hashing

Here we provide a brief overview of Asymmetric Minwise Hashing, an approach based on MinHash LSH,

proposed by Shrivastava and Li [60], that supports containment search for sets. We also explain the

reason why it is not suitable for containment search over sets where the difference in sizes can be very

large. This limitation makes it a poor solution for joinable table search in real data lakes.

Preliminaries

The asymmetric Minwise Hashing technique uses an asymmetric transformation (padding) on sets before

creating MinHash signatures and inserting them into an MinHash LSH index. Let M be the largest set

we want to index. For every set that is smaller than M , we pad the set with new distinct values to

make it of size M . Since the new values have no overlap with the values of the original sets and queries,

the containment measure between two sets is the same before and after padding. The effective Jaccard

similarity after this asymmetric transformation (padding) can be expressed as:

ŝM,|Q|(t) =
t

M
|Q| + 1− t (2.5)

In the above equation, the effective Jaccard similarity only depends on the containment t and the query

set size |Q| because M is a constant. Furthermore, the effective Jaccard similarity ŝM,|Q|(t) is monotonic

with respect to the containment t.

In a MinHash LSH, given a query set, the probability of an indexed set becoming a candidate

is determined by its Jaccard similarity with the query set (see Section 2.3.2). Asymmetric Minwise

Hashing uses padded sets to build a MinHash LSH index. Because of Equation 2.5, the effective Jaccard

similarity of a padded set is monotonic with respect to its containment. Consequently, the probability

of an padded indexed set becoming a candidate is also monotonic with respect to its containment. This

implies that the effective Jaccard similarity nearest neighbors converges to the containment nearest

neighbors, making containment search possible.

Impact of Spread in Set Sizes

We will show with a simple analysis, how a large spread in set sizes can impact the recall of Asymmetric

Minwise Hashing.

Assume a set has a containment of 1.0 with a query size |Q|. Using Equation 2.5 and 2.4, we can

derive the probability of the padded set being selected as a candidate by MinHash LSH:

Pr[t = 1.0|M, |Q|, b, r] = 1−
(

1−
(|Q|
M

)r)b
(2.6)

We can assume that we can tune the LSH to maximize the probability by letting r = 1 and b = 128

given the number of hash functions is 256. We can further assume |Q| = 100 without loss of generality.

Figure 2.2a shows the probability of the set being selected decreases very fast as the upper bound of set

sizes M increases, even when the MinHash LSH is tuned to maximize the probability.

Chapter 2. LSH Ensemble: Approximate Joinable Table Search 16

0 20000 40000 60000 80000 100000

M

0.2

0.4

0.6

0.8

1.0

P
(t

=
1
|M
,|Q
|,b
,r

)

(a) The return probability of a perfect candidate (t =
1.0) using r = 1 and b = 128

0 20000 40000 60000 80000 100000

M

0

100

200

300

400

500

600

700

m
∗

(b) The minimum number of hash functions required
to keep the return probability of a perfect candidate
(t = 1.0) at 0.5

Figure 2.2: Impact of the maximum set size M ; |Q| = 100

Thus, when the maximum set size M is very large relative to the query set size, the probability for

qualifying sets (after padding) being selected as candidates is almost zero, resulting in very low recall.

This scenario can happen in practice when the set sizes follow a Zipfian-like distribution, in which M can

be much larger than most sets, as in the Open Data and WDC Web Table corpus, shown in Figure 2.3a

and 2.3b respectively.

We can still maintain the probability at a certain level by increasing the number of hash functions

we use. Let m∗ be the minimum number of hash functions required to maintain the return probability

of a perfect candidate (i.e., t = 1.0) at 0.5. Figure 2.2b shows m∗ increases linearly with respect to M .

This relationship can be derived using Equation 2.6. In a realistic example, in Canada, US, and UK

Open Data lake, the maximum set size is 22 million, this means that if we want a candidate set with

containment t = 1.0 to have a return probability of at least 0.5 given a query set with size |Q| = 100,

we need at least 152,492 hash functions. Because the cost of building and searching MinHash LSH

index increases with the number of hash functions, having too many hash functions will result in low

performance.

2.4 The LSH Ensemble Index

In this section, we describe our contribution, LSH Ensemble. In our approach, table columns are repre-

sented as sets of distinct values, and the sets are indexed in two stages. In the first stage, the sets are

partitioned into disjoint partitions based on the set sizes. In the second stage, we construct a MinHash

LSH index for each partition. We relate containment to Jaccard similarity, and present a cost model

that describes the resulting false positive probability if an approximate Jaccard similarity threshold is

used to perform containment search. We present a partitioning strategy that optimally minimizes the

false positive rate if an ideal Jaccard similarity threshold is used in each partition. We also optimally

configure the parameters so that the inherent false positives and false negative errors associated with

the LSH indexes are minimized.

Chapter 2. LSH Ensemble: Approximate Joinable Table Search 17

1 10 100 1000 1e4 1e+05 1e+06 1e+07

Set Size

0%

0%

0%

0%

1%

10%

100%

F
ra

ct
io

n
o
f

S
et

s

(a) The set size distribution of 745,414 sets (non-
numeric only) extracted from tables in Canadian, US
and UK Open Data portals.

1 10 100 1000 10000

Set Size

0%

0%

0%

0%

0%

0%

1%

10%

F
ra

ct
io

n
o
f

S
et

s

(b) The set size distribution of 163,510,917 sets (non-
numeric only) extracted from tables in WDC Web Ta-
ble 2015 English Relational Corpus.

Figure 2.3: Set size distributions of data lakes

2.4.1 Translating Containment to Jaccard

For the threshold containment search problem, we are given a desired minimal containment as a threshold

t∗. On the other hand, MinHash LSH can only be tuned given a Jaccard similarity threshold s∗. Thus,

in order to use MinHash LSH for containment search, the containment threshold needs to be translated

to a Jaccard similarity threshold.

Consider a set X with set size |X| and query Q with set size |Q|. We can translate Jaccard similarity
|X∩Q|
|X∪Q| and containment |X∩Q||Q| back and forth by the inclusion-exclusion principle:

|X ∩Q|
|X ∪Q| =

|X ∩Q|
|X|+ |Q| − |X ∩Q| =

|X∩Q|
|Q|

|X|
|Q| + 1− |X∩Q||Q|

If t∗ = |X∩Q|
|Q| , we can compute the corresponding Jaccard similarity threshold which we denote as

ŝ|X|,|Q|(t∗). Similarly, if s∗ = |X∩Q|
|X∪Q| , we can compute the corresponding containment threshold which

we denote as t̂|X|,|Q|(s∗). The translation functions are given as follows.

ŝ|X|,|Q|(t
∗) =

t∗

|X|
|Q| + 1− t∗

t̂|X|,|Q|(s
∗) =

(|X||Q| + 1)s∗

1 + s∗

(2.7)

2.4.2 Jaccard Similarity Filtering for Containment

Notice the translation function t∗ 7→ s∗ in Equation 2.7 depends on the set size |X|, which is typically

not a constant – there are many set sizes in a search index, so we need to approximate |X|. We choose

to do so in a way that ensures the translation to s∗ does not introduce any new false negatives over

using t∗. We do this to ensure the index has good recall since false positives can be filtered out, but false

negatives mean we may miss good candidate tables in our search. Suppose that X is from a partitioned

set of sets with sizes in the interval of [l, u], where l and u are the lower and upper set sizes of the

Chapter 2. LSH Ensemble: Approximate Joinable Table Search 18

0.0 0.2 0.4 0.6 0.8 1.0

Containment Threshold (t∗)

0.0

0.2

0.4

0.6

0.8

1.0

J
ac

ca
rd

T
h

re
sh

ol
d

(s
∗)

s∗|X|,|Q|(t
∗) = t∗

1+ |X||Q|−t∗

s∗u,|Q|(t
∗) = t∗

1+ u
|Q|−t∗

False Positives

Figure 2.4: The exact (upper curve) and approximate (lower curve) translation functions from contain-
ment threshold t∗ to Jaccard similarity threshold s∗; and the shaded area corresponding to the false
positives introduced by the approximation translation function.

partition. A conservative approximation can be made by using the upper bound u for |X|. This ensures

that filtering by s∗ will not result in any new false negatives.

We define a Jaccard similarity threshold using the upper bound u:

s∗ = ŝu,|Q|(t
∗) =

t∗
u
|Q| + 1− t∗ (2.8)

while the exact Jaccard similarity threshold is ŝ|X|,|Q|(t∗). Because u ≥ |X| and ŝ|X|,|Q|(t∗) decreases

monotonically with respect to |X|, we know s∗ = ŝu,|Q|(t∗) ≤ ŝ|X|,|Q|(t∗). Thus, by using this approxi-

mation for s∗, we avoid false negatives introduced by the approximation.

The relationship between the exact translation function ŝ|X|,|Q|(t∗) and the approximate translation

function ŝu,|Q|(t∗) is illustrated in Figure 2.4. Because ŝu,|Q|(t∗) is a lower bound of ŝ|X|,|Q|(t∗) it does not

introduce any false negatives. However, the approximate translation function ŝu,|Q|(t∗) introduces false

positives: assume a user defined containment threshold t∗ = 0.6, which is translated to an exact Jaccard

similarity threshold of ŝ|X|,|Q|(t∗) = 0.4, the approximate Jaccard similarity threshold ŝu,|Q|(t∗) = 0.2,

allowing false positive candidates with Jaccard similarities ranging from 0.2 to 0.4 to pass. Figure 2.4

shows the false positives as the shaded area between the two curves.

Using the approximate translation function ŝu,|Q|(t∗), we define a search procedure described in Algo-

rithm 1. The query set size |Q| can be computed exactly, or estimated using the MinHash signature [17].

We remark that the choice of s∗ will not yield any false negatives, provided that Jaccard-Search per-

fectly filters away all sets with Jaccard similarity less than s∗. Of course, this may not be the case, but

our choice of s∗ using u guarantees no new false negatives are introduced. We will describe the index

Chapter 2. LSH Ensemble: Approximate Joinable Table Search 19

Algorithm 1 Threshold Containment Search

function Containment-Search(I(D), MinHash(Q), t∗) . I(D): an index of a collection of sets
MinHash(Q): the MinHash signature of a query set t∗: containment threshold

l← min{|X| : X ∈ D}, u = max{|X| : X ∈ D}
s∗ = ŝu,|Q|(t∗)
Dcandidates = Jaccard-Search(I(D), Q, s∗)
return Dcandidates

end function

0.0 0.2 0.4 0.6 0.8 1.0

Containment Threshold (t∗)

0.0

0.1

0.2

0.3

J
ac

ca
rd

T
h

re
sh

ol
d

(s
∗)

False Positives

(a) False positives when no parti-
tioning is used

0.0 0.2 0.4 0.6 0.8 1.0

Containment Threshold (t∗)

0.0

0.1

0.2

0.3

J
a
cc

ar
d

T
h

re
sh

o
ld

(s
∗)

False Positives

0.0 0.2 0.4 0.6 0.8 1.0

Containment Threshold (t∗)

0.00

0.02

0.04

0.06

0.08

0.10

J
ac

ca
rd

T
h

re
sh

o
ld

(s
∗)

False Positives

(b) False positives of the lower partition (left) and upper partition (right)

Figure 2.5: An example of using no partition versus two partitions

I(D) and the Jaccard-Search shortly.

2.4.3 Partitioning to Reduce False Positives

As discussed in the previous section, the approximate translation function ŝu,|Q|(t∗) introduces false

positives. We use a partitioning approach, that creates disjoint groups of sets in D, to reduce the false

positives caused by the approximation. We can demonstrate the effectiveness of partitioning using an

example.

Example 2.4.1. Let the sets in an index have the following sizes:

{3, 3, 3, 3, 4, 4, 4, 4, 99, 99, 99, 100, 100, 100}

Without using partitioning, the shaded area corresponding to the false positives (i.e., between the curves

for the exact and approximate translation functions, ŝ|X|,|Q|(t∗) and ŝu,|Q|(t∗), respectively) are shown

in Figure 2.5a. Using partitioning, we can group the sets with sizes {3, 3, 3, 3, 4, 4, 4, 4} into one parti-

tion, which we call the “lower partition”, and the sets with sizes {99, 99, 99, 100, 100, 100} into another

partition, which we call the “upper partition”. Figure 2.5b shows the the false positives of the lower and

upper partitions. We can observe a significant decrease in the area corresponding to false positives as

we move from no partition (or a monolith partition) to two partitions. This example demonstrates that

false positives can be reduced through partitioning.

An LSH Ensemble index partitions the set of all sets in D by their set sizes into disjoint intervals.

Let [li, ui] be the lower and upper bounds of the i-th partition, ui < li+1, and Di = {X : li ≤ |X| ≤
ui, X ∈ D}, where i = 1 · · ·n. With n partitions, we can search each partition and take the union of

Chapter 2. LSH Ensemble: Approximate Joinable Table Search 20

the individual query answers. Algorithm 1 provides the search procedure for a single partition.

Partitioned-Containment-Search({I(D)},MinHash(Q), t∗)

=
⋃
i

Containment-Search(I(Di),MinHash(Q), t∗)

2.4.4 A Cost Model for Containment Search

Let the time complexities of Containment-Search and Jaccard-Search be denoted by Tcontainment and

Tsimilarity respectively.

The complexity of Algorithm 1 is given by:

Tcontainment = Tsimilarity + Θ(correct result) + Θ(NFP) (2.9)

The last two terms are the cost of processing the query result. The value NFP is the total number

of false positives from Jaccard-Search in all the partitions. In Equation 2.9, we only want to minimize

the term Θ(NFP) to reduce the overall cost.

To minimize the time complexity of the parallel evaluation of Partitioned-Containment-Search,

we wish to minimize the following cost function by designing the partitioning intervals [li, ui):

cost = NFP =

n∑
i=1

NFP
li,ui (2.10)

Before we can use this cost model, we must be able to estimate NFP
l,u , the number of false positive in a

partition. This cost model and FP estimation will allow us to compute the expected cost of a particular

partition and develop an optimal partitioning.

2.4.5 Estimation of False Positives

As discussed in Section 2.4.2, by using Jaccard similarity filter with threshold s∗ = ŝu,|Q|(t∗) instead of

the containment threshold t∗, we incur false positives in the search result of Jaccard-Search even if no

error is introduced by using MinHash signatures and LSH.

Consider a set X with size |X| in some partition [l, u]. Set X would be a false positive if it meets the

passing condition of the approximated Jaccard similarity threshold, but actually fails the containment

threshold.

Let the containment of the set be t, and the Jaccard similarity be s. The set is a false positive

if t < t∗ but s > s∗. The Jaccard-Search filters by s∗, so it is filtering X according to an effective

containment threshold of t̂|X|,|Q|(s∗) which we will denote as t|X|. Thus, a set is a false positive if its

containment t falls in the interval of [t|X|, t∗]. In other words, its true containment is below the query

threshold t∗, but above the effective threshold t|X|.

Proposition 2.4.1. The effective containment threshold for X is related to the query containment

threshold by the following relation.

t|X| =
(|X|+ |Q|)t∗
u+ |Q| (2.11)

Given no prior knowledge about the set X, let us assume its containment is uniformly distributed in

the interval [0, 1]. Thus, we can estimate the probability of a true negative being falsely identified as a

Chapter 2. LSH Ensemble: Approximate Joinable Table Search 21

candidate.

Pr[X is FP] =
t∗ − t|X|

t∗
(2.12)

Let Nl,u be the expected total number of sets with sizes in the interval [l, u]. The expected number

of false positives produced by the threshold is given by

NFP
l,u =

∑
|X|∈[l,u]

N|X| · Pr[X is FP] (2.13)

where N|X| is the number of sets with size |X|.
Given a distribution of set sizes in the interval [l, u], we can evaluate Equation 2.13 further to obtain

the following result.

Proposition 2.4.2. Given a distribution of set sizes N|X| in the set size interval |X| ∈ [l, u], the upper

bound of the number of candidate sets which are false positives is given by

NFP
l,u ≤

∑
|X|∈[l,u]

N|X| ·
(

1− |X|
u

)
(2.14)

Proof. (Outline) We need to cover several cases: (1) t∗q ≤ l, (2) tlq ≤ l ≤ t∗q and t∗q ≤ u, (3) l ≤ tlq

and t∗q ≤ u, (4) l ≤ tlq and tuq ≤ u ≤ t∗q, and finally (5) u ≤ tuq. For the first case t∗q ≤ l, we have

the probability of a set with size |X| being a false positive being (t∗ − t|X|)/t.

NFP
l,u =

∑
|X|∈[l,u]

N|X| ·
t∗ − t|X|

t∗

=
∑

|X|∈[l,u]

N|X| ·
(

1− |X|+ |Q|
u+ |Q|

)
≤

∑
|X|∈[l,u]

N|X| ·
(

1− |X|
u

) (2.15)

If u� q, then the upper bound is a tight upper bound. The other cases (2-5) are proven similarly. See

Section 5.4 in the Appendix for the complete proof.

To summarize, using the distribution of set size within an interval [l, u], we can compute an upper

bound of the number of false positives in the interval. This proof can be generalized to other distributions.

2.4.6 Optimal Partitioning

The cost function defined in Equation 2.10, and the estimate of false positive candidate sets in Equa-

tion 2.14, allow us to compute the expected cost of a particular partition. In this section, we provide a

concrete construction of a minimal cost partitioning.

We denote a partitioning of the sets inD by Π = 〈[li, ui]〉ni=1 where every pair of consecutive partitions’

intervals are adjacent, meaning that ui < li+1 and {|X| : ui < |X| < li+1, X ∈ D} = ∅. An optimal

partitioning is one that minimizes the total number of false positives over all partitions.

Definition 2.4.1 (The Optimal Partitioning Problem). A partitioning Π∗ is an optimal partitioning if

Π∗ = arg min
Π

n∑
i=1

NFP
li,ui

Chapter 2. LSH Ensemble: Approximate Joinable Table Search 22

Using the distribution of indexed set sizes, we can construct an optimal partitioning Π∗ by finding

the boundaries. Unfortunately, any Π is query dependent because NFP
li,ui

= NFP
li,ui

(q) (see Equation 2.15).

We cannot afford to repartition D for each query. Fortunately, with a reasonable assumption, there exists

a query independent way of partitioning D near-optimally. We assume that max{|X| : X ∈ D} � q.

Namely, D contains large sets relative to the query. An index will most often be used with queries that

are much smaller than the maximum set size.

Using the upper bound on NFP
li,ui

following Proposition 2.4.2, under the large set assumption, we can

see that

cost(Π∗) =

n∑
i=1

NFP
li,ui ≈

n∑
i=1

∑
|X|∈[li,ui]

N|X| ·
(

1− |X|
ui

)
(2.16)

which is query independent. This suggests that we can approximate an optimal partitioning Π∗ by

minimizing the sum of the upper bounds of all partitions.

Definition 2.4.2 (The Approximate Optimal Partitioning Problem). A partitioning Π∗ is an approxi-

mate optimal partitioning if

arg min
Π

n∑
i=1

∑
|X|∈[li,ui]

N|X| ·
(

1− |X|
ui

)
(2.17)

Because every pair of consecutive partitions are adjacent to each other, and the cost of each partition

only depends on itself, we can use dynamic programming to find optimal partition boundaries in O(|N |2 ·
n) complexity, where N is the distribution of set sizes, |N | is the number of distinct set sizes, and n is

the number of partitions.

Here we provide an overview of the dynamic programming algorithm. We first define the cost of a

partition [li, ui] simply as the upper bound of the expected number of false positives, and the cost of

multiple consecutive partitions as the sum of all the upper bounds from the partitions. This definition

is formalized in Equation 2.18: Cost([li, ui]) is the cost of a single partition starting from li and ending

at ui; Cost(Π∗(l1, ui)) is the cost of an optimal partitioning with i partitions over a domain of set sizes

starting from l1 and ending at ui.

Cost([li, ui]) =
∑

|X|∈[li,ui]

N|X| ·
(

1− |X|
ui

)

Cost(Π∗(l1, ui)) =

i∑
j=1

Cost([lj , uj])

(2.18)

Given a frequency distribution of set sizes N over a domain of set sizes, [l1, un], and the number of

partitions n, the dynamic programming algorithm to find the optimal partitioning Π∗(l1, un) works as

follow: first compute the cost of all possible single partitions with boundaries lj , uj ∈ [l1, un] and lj ≤ uj ;
then use Equation 2.19 to compute the optimal partitioning Π∗(l1, u2) of all two-partition cases for all

u2 ∈ (l1, un]; then similarly compute all the three-partition cases for all u3 ∈ (l2, un] and so on, finishing

at the single n-partition case for un = un.

Chapter 2. LSH Ensemble: Approximate Joinable Table Search 23

Cost(Π∗(l1, ui)) = Cost(Π∗(l1, ui−1)) + Cost([li, ui]) Recursive case

Cost(Π∗(l1, u1)) = Cost([l1, u1]) Base case
(2.19)

The complexity of computing the cost of all single partitions is O(|N |2), and the complexity of

computing the cost of all i > 1 optimal partitionings, Π∗(l1, ui), is also O(|N |2). Since we are performing

this operation n times, the total complexity is O(|N |2 · n).

It is important to note that many real-world domains, set sizes are sparse, meaning

|N | = |{|X| : l1 ≤ |X| ≤ un, X ∈ D}| � |un − l1| (2.20)

Examples are the Open Data lakes, whose set size distributions are shown in Figures 2.3a and 2.3b.

The Canada, US and UK Open Data Lake has approximately 14K unique set sizes in the range of

[1, 22075531]. The WDC Web Tables have approximately 4K unique set sizes in the range of [1, 17030].

These statistics imply that, even when the maximum set size is large, the complexity of the dynamic

programming algorithm in practice is still computationally feasible. For example, computing the optimal

partitioning of 32 partitions on the sets from Canada, US and UK Open Data Lake takes less than 10

minutes using Python on a reasonably modern laptop.

2.4.7 Threshold Containment Search Using Dynamic LSH

In Algorithm 1, we assume the existence of a search algorithm based on a Jaccard similarity threshold

for each partition Di. We choose to index the sets in Di using a MinHash LSH index with parameters

(b, r) where b is the number of bands used by the LSH index, and r is the number of hash values in each

band.

Traditionally, MinHash LSH has a fixed (b, r) configuration, and thus has a static Jaccard similarity

threshold given by the approximation:

s∗ ≈ (1/b)(1/r) (2.21)

One can observe that MinHash LSH only approximates Jaccard-Search, and therefore will introduce

false positives, in addition to NFP in each partition, and also false negatives. In this section, we describe

our method of selecting (b, r) so that the additional error due to the approximation of MinHash LSH is

minimized. Since s∗ is query dependent, we choose to use a dynamic LSH index, namely LSH Forest [4],

so we can vary (b, r) for each query. LSH Forest uses a prefix tree to store the r hash values in each band

(see Section 2.3.2), thus the effective value of r can be changed at query time by choosing the maximum

depth for traversal in each prefix tree. The parameter b can be varied by simply choosing the number

of prefix trees to visit.

We now describe how the parameters (b, r) are selected so that the resulting selectivity agrees with

s∗. Using the relationship between Jaccard similarity s and containment t, we express the probability

of a set X becoming a candidate in terms of t = |X∩Q|
|Q| instead of s = |X∩Q|

|X∪Q| .

Pr[t||X|, |Q|, b, r] = 1− (1− sr)b = 1−

1−

 t
|X|
|Q| + 1− t

rb

(2.22)

Chapter 2. LSH Ensemble: Approximate Joinable Table Search 24

0.0 0.2 0.4 0.6 0.8 1.0

t - Containment

0.0

0.2

0.4

0.6

0.8

1.0

P
(t
||X
|,|
Q
|,b
,r

)

FP

FN

Figure 2.6: P (t||X|, |Q|, b, r) - probability of becoming a candidate with respect to containment, given
|X| = 10, |Q| = 5, b = 256, and r = 4; containment threshold t∗ = 0.5 (dashed line)

Figure 2.6 plots the probability (for t∗ = 0.5), along with the areas corresponding to the false positive

(FP) and false negative probabilities (FN) induced by the MinHash LSH approximation. It is important

to notice that the false positives here are introduced by the use of Jaccard-Search with MinHash

LSH, which is different from the false positive introduced by the translation function of the containment

threshold to a Jaccard similarity threshold in Section 2.4.5.

Note that t cannot exceed the size ratio |X|/|Q|. We can express the probability of X being a false

positive, FP, or a false negative, FN, in terms of t∗ and |X|/|Q|.

FP(|X|, |Q|, t∗, b, r) =

∫ t∗

0
Pr[t||X|, |Q|, b, r]dt |X|

|Q| ≥ t∗∫ |X||Q|
0 Pr[t||X|, |Q|, b, r]dt |X|

|Q| < t∗
(2.23)

FN(|X|, |Q|, t∗, b, r) =

∫ 1

t∗
1− Pr[t||X|, |Q|, b, r]dt |X|

|Q| ≥ 1∫ |X||Q|
t∗ 1− Pr[t||X|, |Q|, b, r]dt t∗ ≤ |X||Q| < 1

0 |X|
|Q| < t∗

(2.24)

The optimization objective function for tuning LSH is given as:

arg min
b,r

(FN + FP)(|X|, |Q|, t∗, b, r), such that 0 < br ≤ m (2.25)

where m is the number of minwise hash functions. Since |X| is not constant within a partition, we

cannot use this objective function for tuning the LSH of the partition. As described in Section 2.4.2,

for each partition i, we used ui to approximate |X| ∈ [li, ui], and the alternative objective function for

Chapter 2. LSH Ensemble: Approximate Joinable Table Search 25

tuning we used is:

arg min
b,r

(FN + FP)(ui, |Q|, t∗, b, r), such that 0 < br ≤ m (2.26)

For some particular value of |X|, the b and r found using the alternative objective function would be

better if ui were closer to |X|. Formally, for some ε > 0, there exists δ > 0 such that when ui− |X| < δ,

(FP + FN)(|X|, |Q|, t∗, bp, rp)− (FP + FN)(|X|, |Q|, t∗, bopt, ropt) < ε

where bp and rp are the parameters found using the alternative objective function, and bopt and ropt are

the optimal parameters computed with the exact objective function.

The computation of (b, r) can be handled offline. Namely, we choose to pre-compute the FP and FN

for different combinations of (b, r). At query time, the pre-computed FP and FN are used to optimize the

objective function in Equation 2.26. Given that b and r are positive integers and their product must be

less than m, the computed values require minimal memory overhead. Finally, we query each partition

with the dynamically determined (b, r) using a dynamic LSH index as described by Bawa et al. [4].

In summary, the query evaluation of LSH Ensemble performs dynamic translation of the containment

threshold to a per-partition threshold of Jaccard similarity. Then we query each partition with different

(b, r) to identify the candidate sets.

2.5 Experiments

In this section, we present the experimental evaluation of LSH Ensemble on real data lakes, and com-

parison with state-of-the-art approximate and exact algorithms.

2.5.1 Data Lakes

We built a data lake of 215,393 tables by crawling the Canadian1, U.K.2 and U.S.3 open data portals (as

of March 2017). We also obtained another data lake of 50,820,165 tables from the WDC Web Tables [40],

a public corpus of tables extracted from HTML pages in the Common Crawl.

For each lake, we extracted sets by taking the distinct values in every column of every table. For

Canadian, U.K., and U.S. Open Data tables, we also removed all numerical values, as they create casual

joins that are not meaningful. We extracted 745,414 sets from the Canadian, U.K., and U.S. Open Data

tables, and around 200 million sets from the WDC Web Tables corpus.

2.5.2 Benchmarks

We generated three query benchmarks from the sets extracted from Canadian, U.K., and U.S. open data

tables. In order to evaluate performance on different query sizes, each benchmark is a set of queries

(sets) selected from one of the three size ranges: 10 to 1k, 10 to 10k, and 10 to 100k. For the rest of

this chapter, we will refer to each benchmark using its upper-bound. For example, the benchmark with

range 10 to 100k is simply called “100k”. For each benchmark, we divide its range into 10 equal-width

intervals except for the first interval, which starts from 10. For example, for range 10 to 1k, the intervals

1https://open.canada.ca
2https://data.gov.uk
3https://data.gov

https://open.canada.ca
https://data.gov.uk
https://data.gov

Chapter 2. LSH Ensemble: Approximate Joinable Table Search 26

are [10, 100], [100, 200], and all the way to [900, 1000]. We then sample 100 sets from each interval

using uniform random sampling. Sampling by interval prevents a benchmark that has the same skewed

distribution as the repository itself, and heavily biased to sample smaller sets. We want to investigate

the effect of query size on the performance of algorithms, thus we need enough queries of all sizes to

conduct meaningful comparisons.

For indexed sets, we sampled 74,662 sets, which is 10% of all sets. We did not use all the sets because

they would not fit in memory on a single machine.

We also used WDC Web Tables in our scalability experiment (Section 2.5.6), in which we actually

index more than 200 million sets using multiple machines.

The benchmarks are published online4.

2.5.3 Algorithms

We evaluate the accuracy and performance of our LSH Ensemble technique, and compare against several

algorithms as baselines:

• MinHashLSH is a modified version of the algorithm discussed in Section 2.3.2, proposed by Indyk

and Motwani [36]. We modified the original algorithm to support containment search using the

approximation technique introduced in Section 2.4.2. It can be considered as LSHEnsemble with a

single partition.

• AsymMinHashLSH is the state-of-the-art LSH algorithm for containment search proposed by Shri-

vastava and Li [60]. We discussed this algorithm in Section 2.3.3.

• PrefixFilter is a state-of-the-art exact similarity search algorithm [5] using an inverted index.

We modified the algorithm to support threshold containment search.

• LSHEnsemble is the algorithm presented in this chapter. We used 3 different partitionings contain-

ing 8, 16, and 32 partitions labeled as LSHEnsemble (8), LSHEnsemble (16) and LSHEnsemble

(32).

• LSHEnsembleParallel is the same algorithm as LSHEnsemble, however, it leverages a multi-core

platform to parallelize the querying of the indexes in all partitions. This is especially useful when

the complete index is very large. We tested this algorithm only in the scalability experiments in

Section 2.5.6.

For a fair comparison, MinHashLSH and AsymMinHashLSH are implemented to use the dynamic LSH

algorithm for containment search described in Section 2.4.7, and the upper bound of set sizes is used to

translate containment threshold to Jaccard similarity threshold as described in Section 2.4.2.

We have published the implementations MinHashLSH, AsymMinHashLSH and LSHEnsemble in an open

source library5. We also published our implementations of PrefixFilter6 and LSHEnsembleParallel7.

The benchmark datasets and indexes are stored in memory during experiments.

4https://github.com/ekzhu/set-similarity-search-benchmarks
5https://github.com/ekzhu/datasketch
6https://github.com/ekzhu/SetSimilaritySearch
7https://github.com/ekzhu/lshensemble

https://github.com/ekzhu/set-similarity-search-benchmarks
https://github.com/ekzhu/datasketch
https://github.com/ekzhu/SetSimilaritySearch
https://github.com/ekzhu/lshensemble

Chapter 2. LSH Ensemble: Approximate Joinable Table Search 27

0.2 0.4 0.6 0.8 1.0

Thresholds

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

P
re

ci
si

on
s

0.2 0.4 0.6 0.8 1.0

Thresholds

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
g
e

R
ec

a
ll
s

MinHashLSH

LSHEnsemble (8)

LSHEnsemble (16)

LSHEnsemble (32)

AsymMinhashLSH

(a) Average precision and recall vs. containment thresholds.

200 400 600 800

Query Sizes

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

P
re

ci
si

on
s

200 400 600 800

Query Sizes

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

R
ec

al
ls

MinHashLSH

LSHEnsemble (8)

LSHEnsemble (16)

LSHEnsemble (32)

AsymMinHashLSH

(b) Average precision and recall vs. query size; containment threshold set to 0.6.

Figure 2.7: Precision and recall on 1k query benchmark.

2.5.4 Accuracy

For the accuracy evaluation, we use the set-overlap based definition of precision and recall. Let D be

the set of sets in the index. Given a query set Q and a containment threshold t∗, the ground truth

set is defined as TQ,t,D = {X| |X∩Q||Q| ≥ t∗, X ∈ D}. Let AQ,t∗,D be the set of sets returned by a search

algorithm. Precision and recall are defined as follows.

Precis. =
|AQ,t∗,D ∩ TQ,t∗,D|

|AQ,t∗,D|
, (2.27)

Recall =
|AQ,t∗,D ∩ TQ,t∗,D|

|TQ,t∗,D|
(2.28)

It is important to note that if the algorithm uses post-processing to remove false positives (i.e., verify

exact containment between the query set and the sets returned by the index), the precision will be 1.0.

In order to reflect the accuracy of the search index itself, we measure the precision using the unverified

results before post-processing.

Chapter 2. LSH Ensemble: Approximate Joinable Table Search 28

Figure 2.7, 2.8 and 2.9 plot the precision and recall of the approximate algorithms (MinHashLSH,

AsymMinHashLSH, and LSHEnsemble) on the 1k, 10k and 100k benchmarks respectively. We report the

average precision and recall for every containment threshold from 0.1 to 1.0 with a step size of 0.1.

We also report the average precision and recall for every query size interval in the query benchmarks.

Based on these results, the partitioning provides a clear and consistent improvement in precision over

the baselines for all thresholds and query sizes, verifying our theoretical analysis of partitioning.

As the number of partitions grows, the precision increases for all containment thresholds and query

sizes; however the relative gain diminishes (e.g., from 16 to 32 partitions) as the upper bound of each

partition becomes a better approximation of the set sizes of the partition.

Recall decreases slightly each time the number of partitions doubles. The false negatives are intro-

duced by the MinHash LSH index in each partition, as described in Section 2.4.7. The index tuning

becomes less conservative (regarding false negatives) as the upper bound of a partition approaches the

actual set sizes. There is a trade-off between partitioning and recall, however, since the approximation

always remains conservative, the recall is not affected significantly.

Since the containment threshold changes the optimization constraints for index tuning (see Sec-

tion 2.4.7) and the parameter space is integer, discontinuity may exist in the optimization objective.

This is likely the reason behind the observed variability of precision and recall across different contain-

ment thresholds.

AsymMinHashLSH achieved high precision comparable to that of LSHEnsemble in all benchmarks,

however, performed poorly in recall. Due to padding, some of the hash values in a MinHash signature

are from the new padded values. For an indexed set to become a candidate, its hash values from the

original set need to have collisions with the hash values in the signature of the query set. Thus, with

a finite number of hash functions, the probability of an indexed set becoming a candidate, including

sets that should qualify, is lowered. This issue is not significant when the spread in set sizes is small.

However, when the spread is large, the amount of padding required becomes very large, making the

probability of qualifying sets becoming candidates very low and sometimes nearly zero. This explains

the low average recall over the Open Data sets. As the containment threshold increases, sets need to

have a greater number of collisions in their hash values. Thus, the probability of finding qualifying sets

drops to zero for high thresholds, resulting in a recall of zero. For lower thresholds, recall is better for

large queries (e.g., the 100k benchmark at threshold 0.6, Figure 2.9 right plots). This is simply because

larger queries lead to larger candidates, which are less affected by padding.

Looking at how many queries actually return something, only 1.6% of the 1k benchmark queries

returned non-empty results using AsymMinHashLSH for thresholds less than or equal to 0.6. This number

is 10% and 30% for the 10k and 100k benchmarks. We consider an empty result having precision equal

to 1.0, however, we exclude such results when computing average precision. For joinable table search, a

high recall is a necessity. Thus, these results show that LSHEnsemble is a better choice for the joinable

table search problem over Open Data lakes.

The partitioning assumes the set size of the query is much smaller than the maximum set size of the

partitioned index. We investigated whether in practice large query set size influences the effectiveness

of the partitioning technique. Figure 2.7b, 2.8b and 2.9b show the precision and recall for queries

with different set sizes on the 1k, 10k and 100k benchmarks respectively. For the large queries (e.g.,

100k benchmark), the precision is smaller, due to the assumption no longer holding. Still, the precision

increases with more partitions, confirming our analysis that partitioning should always increase precision,

Chapter 2. LSH Ensemble: Approximate Joinable Table Search 29

0.2 0.4 0.6 0.8 1.0

Thresholds

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

P
re

ci
si

on
s

0.2 0.4 0.6 0.8 1.0

Thresholds

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
g
e

R
ec

a
ll
s MinHashLSH

LSHEnsemble (8)

LSHEnsemble (16)

LSHEnsemble (32)

AsymMinhashLSH

(a) Average precision and recall vs. containment thresholds.

2000 4000 6000 8000

Query Sizes

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

P
re

ci
si

on
s

2000 4000 6000 8000

Query Sizes

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

R
ec

al
ls MinHashLSH

LSHEnsemble (8)

LSHEnsemble (16)

LSHEnsemble (32)

AsymMinHashLSH

(b) Average precision and recall vs. query size; containment threshold set to 0.6.

Figure 2.8: Precision and recall on 10k query benchmark.

and the recall stays high.

2.5.5 Query Performance

We have compared LSHEnsemble against other approximate algorihtms on precision and recall, now

we compare it against PrefixFilter, a state-of-the-art exact algorithm, on query performance. The

experimental results on all benchmarks are shown in Figure 2.10.

On the 1k benchmark (Figure 2.10a), both LSHEnsemble and PrefixFilter’s query performance

improves with increasing threshold, while LSHEnsemble constantly out-performs by a factor of 3 to 4.

The query time includes the time to verify exact containment of candidates as described in the cost model

in Section 2.4.4, thus the query result has 100% precision. The high performance is the most desirable

characteristics of LSHEnsemble and by extension approximate search algorithms, at the expense of a

slight reduction in recall.

On the 10k and 100k benchmarks, the performance advantage of LSHEnsemble starts to diminishes a

little – the 8-partition becomes slower than PrefixFilter at threshold 0.6. This can be explained by the

Chapter 2. LSH Ensemble: Approximate Joinable Table Search 30

0.2 0.4 0.6 0.8 1.0

Thresholds

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

P
re

ci
si

on
s

0.2 0.4 0.6 0.8 1.0

Thresholds

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
g
e

R
ec

a
ll
s MinHashLSH

LSHEnsemble (8)

LSHEnsemble (16)

LSHEnsemble (32)

AsymMinhashLSH

(a) Average precision and recall vs. containment thresholds.

20000 40000 60000 80000

Query Sizes

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

P
re

ci
si

on
s

20000 40000 60000 80000

Query Sizes

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

R
ec

al
ls MinHashLSH

LSHEnsemble (8)

LSHEnsemble (16)

LSHEnsemble (32)

AsymMinHashLSH

(b) Average precision and recall vs. query size; containment threshold set to 0.6.

Figure 2.9: Precision and recall on 100k query benchmark.

low-precision threshold regions in Figures 2.8 and 2.9 of the accuracy experiments – since the precision

is low (≈ 20%), the cost of verifying exact containment and removing false positives becomes higher,

slowing down the overall performance. Despite this data point, we can see the benefit of partitioning:

the 16 and 32-partition still out-perform PrefixFilter by a factor of 2 to 3, because their precision is

much higher.

MinHashLSH’s query performance stays constant until threshold 0.6, from where it becomes as fast as

LSHEnsemble. This is also due to the low-precision regions shown in Figures 2.7, 2.8, and 2.9. From this

can we see the importance of partitioning: LSHEnsemble with 32 partitions is always the fastest, while

MinHashLSH, having no partition, can be slower than the exact algorithm.

We “zoom in” to threshold 0.6 of all benchmarks and investigate the effect of query size on query

performance. For the smaller queries in the 1k benchmark, the query time has high variance and it is

unclear if query size has an effect. For the larger queries in the 10k and 100k benchmarks, the query time

increases with query size, but the trend is sublinear. Larger queries lead to longer query time because

at the same containment threshold, larger queries are more likely to find larger candidates than smaller

Chapter 2. LSH Ensemble: Approximate Joinable Table Search 31

queries, and larger candidates are more expensive to verify.

0.2 0.4 0.6 0.8 1.0

Thresholds

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

9
0

P
er

ce
n
ti

le
Q

u
er

y
T

im
e

(m
s)

MinHashLSH

LSHEnsemble (8)

LSHEnsemble (16)

LSHEnsemble (32)

PrefixFilter

200 400 600 800

Query Sizes

5

10

15

20

25

30

35

40

45

9
0

P
er

ce
n
ti

le
Q

u
er

y
T

im
e

(m
s)

MinHashLSH

LSHEnsemble (8)

LSHEnsemble (16)

LSHEnsemble (32)

PrefixFilter

(a) 1k query benchmark

0.2 0.4 0.6 0.8 1.0

Thresholds

0.00

0.05

0.10

0.15

0.20

90
P

er
ce

n
ti

le
Q

u
er

y
T

im
e

(m
s)

MinHashLSH

LSHEnsemble (8)

LSHEnsemble (16)

LSHEnsemble (32)

PrefixFilter

2000 4000 6000 8000

Query Sizes

20

40

60

80

100

120

140
90

P
er

ce
n
ti

le
Q

u
er

y
T

im
e

(m
s)

MinHashLSH

LSHEnsemble (8)

LSHEnsemble (16)

LSHEnsemble (32)

PrefixFilter

(b) 10k query benchmark

0.2 0.4 0.6 0.8 1.0

Thresholds

0.0

0.1

0.2

0.3

0.4

0.5

90
P

er
ce

n
ti

le
Q

u
er

y
T

im
e

(m
s)

MinHashLSH

LSHEnsemble (8)

LSHEnsemble (16)

LSHEnsemble (32)

PrefixFilter

20000 40000 60000 80000

Query Sizes

0

50

100

150

200

250

300

90
P

er
ce

n
ti

le
Q

u
er

y
T

im
e

(m
s)

MinHashLSH

LSHEnsemble (8)

LSHEnsemble (16)

LSHEnsemble (32)

PrefixFilter

(c) 100k query benchmark

Figure 2.10: 90 percentile query time (including post-processing to remove false positives) vs. threshold
(left plots) and query size (right plots); threshold is set to 0.6 for right plots.

Chapter 2. LSH Ensemble: Approximate Joinable Table Search 32

2.5.6 Scalability

For scalability, we used the English relational subset of the WDC Web Table Corpus 2015, from which

we extracted 262,893,406 sets. We selected a random subset of 3,000 sets to use as test queries. Due to

the massive number of sets, an index for all sets does not fit in the memory of a single machine. Thus,

we divided the sets into 5 equal chunks on 5 machines, and then built an index for each chunk. A query

client sends query requests to all indexes in parallel, and the results are unioned.

The first plot in Figure 2.11 shows the indexing cost with respect to the number of sets indexed. The

indexing performance of LSHEnsembleParallel scales linearly with respect to the number of sets. In

addition, because of the parallel implementation, the number of partitions does not affect the indexing

cost. The second plot in Figure 2.11 shows the query cost of LSHEnsembleParallel. The query cost of

LSHEnsembleParallel increases with the number of sets in the index, because the number of candidates

returned also increases (for a given threshold), and query processing cost includes the cost of outputting

the candidates. On the other hand, the query cost increases much slower with more partitions. Again,

this is because the precision is improved by partitioning, yielding a smaller selectivity.

52.6 105.2 157.7 210.3 262.9

Number of Sets (Million)

0

20

40

60

80

100

In
d

ex
in

g
T

im
e

(M
in

u
te

)

52.6 105.2 157.7 210.3 262.9

Number of Sets (Million)

0

1

2

3

4

5

6

7

M
ea

n
Q

u
er

y
T

im
e

(S
ec

on
d

)

LSHEnsemble (8) LSHEnsemble (16) LSHEnsemble (32)

Figure 2.11: Indexing and Mean Query Cost

2.6 Related Work

In this section, we provide a brief survey of previous work related to joinable table search and containment

search from different perspectives.

IR Indexes for Keyword Search. Indexes for searching structured datasets given a user-specified

keyword query have been extensively studied [16, 34, 38, 53]. This work is similar to containment search

as search results should contain the keywords in the query. However, in containment search, the query

itself is a column containing a (possibly) large number of data values. To use keyword search to solve

containment search, we could generate a keyword for each distinct data value in the column. Such a

solution is suitable for small columns. However, we need to handle very large columns containing millions

of distinct values. In our solution, the index search time complexity is constant time with respect to the

query column size. In addition, the relevance measures in keyword search engines, such as the tf-idf score,

consider the frequency of each keyword in all documents. This is different from the relevance measure in

containment search, which considers the degree of overlap between the query and the indexed column.

Chapter 2. LSH Ensemble: Approximate Joinable Table Search 33

Other LSH Indexes. Various LSH indexes have been developed for distance metrics other than

Jaccard, including Euclidean [19], Hamming [36], and Cosine distance [12], among others. These ap-

proaches are widely used in areas such as image search and document deduplication. Many such LSH

variations require the data to be vectors with fixed dimensions. While it is possible to convert columns

into binary vectors, where each unique data value is a dimension, binary vector representation is not

practical for domain search at Internet-scale. These indices require prior knowledge of the values in the

query domain, hence, they would need to be rebuilt whenever a domain with unseen values is inserted.

Thus, LSH indexes, such as MinHash LSH, that do not require a fixed set of domain values are better

suited for Internet-scale domain search.

SimHash is an LSH index for Cosine distance [12], and it is applicable to domain search, since it does

not prescribe a fixed set of values for all domains. However, it is has been shown that MinHash LSH

is more computationally efficient than SimHash [59]. Hence, we use MinHash LSH in our experimental

evaluation.

Asymmetric Minwise Hashing. Asymmetric Minwise Hashing by Shrivastava and Li is the state-

of-the-art technique for containment search over sets [60] which we discussed in Section 2.3.3. Because

we consider a table column as a set of distinct data values, this technique can also be used for joinable

table search. While Shrivastava and Li showed that this technique is very useful for containment search

over sets extracted from text documents such as emails and news articles, our analysis showed that the

asymmetric transformation reduces recall when the set the set sizes can be very different (Section 2.3.3).

This analysis was further borne out in our experiments that used Asymmetric Minwise Hashing for join

search over a real data lake where its recall was very low, even zero in many experiments (Section 2.5.4).

Schema and Ontology Matching Techniques. Schema matching involves finding attributes in

different tables (schemas) that model related information [54]. Schema matching often uses attribute

names (which we do not use). Approaches that use only attribute values are sometimes called instance-

based. Examples of unsupervised instance-based schema matching techniques are COMA++ [2] and

DUMAS [8]. These approaches rely on overlap or similarity of instance values. In order to make

instance-based matchers scalable, Duan et al. [24] use MinHash LSH and random projection (simhash)

to do type matching based on Jaccard and Cosine similarity. The goal of LSH Ensemble is to match

a query column against extremely large number of columns with column sizes varying from a few to

millions. LSH Ensemble can be applied in large-scale schema and ontology matching, but to the best

of our knowledge, no schema matchers scale to millions of columns. We compare LSH Ensemble with

MinHash LSH (used by Duan et al. [24]) experimentally in Section 2.5, and show that LSH Ensemble

provides better performance over data lakes.

Inclusion Dependency Discovery Techniques. Given two tables and two lists of attributes,

R(X) and S(Y), an inclusion dependency (IND) holds if every tuple in R(X) also appears in S(Y). If the

attribute lists contain a single attribute, the dependency is a unary inclusion dependency. An important

challenge in IND discovery is managing the exponential problem of considering all combinations of

attributes. Some approaches have a first phase that searches for all unary inclusion dependencies and

compute single attribute containment as we do in join search. Unary IND discovery can require exact

containment or some approaches, which find approximate INDs, require the containment to be above a

threshold [48]. In contrast to our work however, these approaches find all INDs or all approximate INDs

within a relational database and typically scale to only a small number of tables (and attributes) and

small numbers of unique attribute values. Examples of more scalable algorithms for inclusion dependency

Chapter 2. LSH Ensemble: Approximate Joinable Table Search 34

discovery are SPIDER [3], which takes advantages of parallel computation, and BINDER [52], which uses

a divide-and-conquer approach. Tschirschnitz et al. [62] also studied scaling up inclusion dependency

discovery over many tables, such as the WDC Web Table corpus. Notably, these more scalable algorithms

only find exact (not approximate) INDs. And importantly, they are batch algorithms that find all

dependencies among a set of tables, and are not applicable to the search problem when the query table

is not in this set.

Methods for Table Search. Table search is the problem of finding join candidates in a repository

of relational tables. Semantic-based table search approaches enrich tables with ontology-based semantic

annotations [63, 44]. Semantic-based table search is complementary to our approach which uses syntactic

set containment. Some table search approaches rely on table context and metadata in addition to table

content to do search [41, 71]. For instance, InfoGather uses a matching measure consisting of features

such as the similarity of text around tables in Web pages, the similarity of each table to its own context,

the similarity of the URL of the web page containing each table, and the number of overlapping tuples

in tables [71]. Open data sets often lack text context, meaningful descriptions, and reliable schema

information. Our approach relies solely on the data values of columns in tackling the joinable table

search problem. LSH Ensemble can be used as a component in table search engines when additional

information is available.

2.7 Summary

We proposed the threshold containment search problem where the goal is to find sets that maximally

contain a query set from tables in data lakes. We presented LSH Ensemble, a new index structure based

on MinHash LSH, as a solution to the threshold containment search problem.

By means of partitioning, we show how we can efficiently perform set containment-based queries

even on hundreds of millions of sets with highly skewed distributions. We constructed a cost model that

describes the precision of LSH Ensemble within a given partition. We show that for any data distribution,

there exists an optimal partitioning scheme that minimizes the expected number of false positives, and

we present a dynamic programming algorithm to compute the optimal partitioning efficiently.

We have conducted extensive evaluation of LSH Ensemble on Open Data tables and the entire English

relational WDC Web Table Corpus. Our solution is able to sustain query times of few seconds even over

262 million sets.

Chapter 3

JOSIE: Exact Top-K Joinable Table

Search

In this chapter, we present JOSIE, an algorithm for exact top-k overlap set similarity search that allows

for efficient joinable table search in data lakes. This algorithm solves a different problem from LSH

Ensemble: it finds a ranked list of k most relevant candidate tables with the highest containment, and

its search result is exact. JOSIE completely out performs the state-of-the-art exact techniques, while

being closely on par with LSH Ensemble (when adapted to the top-k problem) and even faster in some

cases, in experiments using a real-world Open Data data lake and the WDC Web Table corpus. JOSIE’s

high performance across different data lakes is due to its adaptive minimization of the read cost of

sets and posting lists. This cost minimization is especially advantageous when both the quantity and

sizes of sets and posting lists are large, as is typical in data lakes. LSH Ensemble remains the fastest

solution when k is large, but the large number of scenarios where JOSIE can out perform an approximate

technique like LSH Ensemble is an important, and perhaps surprising, contribution of this thesis. The

algorithm and experimental evaluation presented in this chapter are published work [73].

3.1 The Top-K Overlap Set Similarity Search Problem

As discussed in the introduction, a search engine for joinable tables asks a user to input a table and specify

a query column, and returns tables that can be joined with the input table on the query column. In the

last chapter, we framed the joinable table search problem as a threshold containment search problem

for sets, in which a user provides a set as the query and a containment threshold, the index returns

candidates with containment scores greater than or equal to the threshold. Containment measures how

many distinct values in the query column can be joined with the candidate column.

Threshold-based search functionality is useful when the user understands its meaning and knows

what is a good threshold to choose that results in not too many or too few results. However, this

assumption may not always hold, especially when the user is dealing with an unfamiliar data lake.

An alternative search problem is top-k: the user provides a set, and instead of a threshold, he/she

provides an integer k, which specifies the maximum number of ranked candidates to return. The returned

candidates must be the ones with the highest containment. The user does not need any prior knowledge

to specify k. For example, a small value (e.g., 10) may be sufficient to get an understanding for what is

35

Chapter 3. JOSIE: Exact Top-K Joinable Table Search 36

Table 3.1: Characteristics of sets derived from three data lakes in comparison with other datasets used
in previous work.

#Sets MaxSize AvgSize #UniqTokens

OpenData 745,414 22,075,531 1,540 562,320,456
WebTable 163,510,917 17,030 10 184,644,583
Enterprise 2,032 859,765 4,011 3,902,604

AOL 10,054,184 245 3 3,900,000
ENRON 517,422 3,162 135 1,100,000
DBLP 100,000 1,625 86 6,864

available in the data lake.

Recall containment of a candidate X given query set Q is |Q∩X||Q| . Since for a given instance of a

search task, the Q is fixed, the returned candidates can be ranked simply using the nominator |Q ∩X|,
which is called the intersection size1 between Q and X.

Let us define the top-k overlap set similarity search problem in the context of finding joinable tables.

We take all columns of all tables in a repository of tables, convert every column into a set of distinct

values, and call the big collection of sets Ω. Let Q be the set of distinct values in a user specified column.

The top-k overlap set similarity search problem can be defined as follows.

Definition 3.1.1 (Top-k overlap set similarity search problem). Given a set Q (the query), and a

collection of sets Ω, find a sub-collection ω of at most k sets such that:

1. |Q ∩X| > 0, X ∈ ω, and

2. min{|Q ∩X|, X ∈ ω} ≥ |Q ∩ Y |, Y /∈ ω, Y ∈ Ω

The key here is that the k-th (or the last) set in the result ranked by set intersection size with the

query, has the same or larger intersection size as any other set that is not in the result. As we will

explain in the next section, the k-th intersection size in the result can be used as a threshold to prune

unseen sets.

Overlap set similarity search is an instance of the set similarity search problems that have been

studied extensively. Notably, solutions for this problem have focused on relatively small sets such as

keywords and titles [42, 69, 6, 65, 22, 66]. The state-of-the-art solutions rely on inverted indexes, which

contain posting lists that map every distinct value in a set (or token) to a list of indexed sets that contain

it. The solutions involve either 1) reading all posting lists in the query set to find candidates, and then

ranking them based on the number of times they appear, or 2) reading a subset of posting lists to locate

candidates, and then reading the candidates to find the final ranked list of sets. Most of these solutions

assume the inverted index is relatively small.

The characteristics of modern data lakes take this classic problem to the next level. Data lakes may

have large set sizes and huge dictionaries (number of distinct values) as shown in Table 3.1. In this

table, we include three data lakes. The first is a lake of Open Data that was used in our evaluation of

LSH Ensemble (Section 2.5.1), It contains the non-numeric attributes from 215,393 tables from U.S.,

U.K., and Canadian Open Data portals as of March 2017. The second is the subset of the WDC Web

1Past work in set similarity search sometimes called this “overlap similarity” [70, 65]. We find the term “intersection
size” to be less ambiguous. In this thesis, we use the latter, but keep the common name “overlap set similarity search”.

Chapter 3. JOSIE: Exact Top-K Joinable Table Search 37

Table Corpus [40] which was also used in our LSH Ensemble evaluation. The third are statistics from

a private enterprise data lake from a large organization (obtained from Deng et al. [20]). The last

three lines report not data lakes, but rather typical datasets used in previous work for set similarity

search [69, 6, 65] (numbers from Mann et al. [46]). Notice that the previous work has used data with

much smaller set sizes and far fewer unique values.

These differences have significant implications. First, due to the huge number of unique tokens, an

inverted index will use a lot of space – approximately 100 GB in PostgreSQL. So, memory management

becomes an issue for the index and reading the whole index (all posting lists) becomes infeasible. Second,

sets are large as well so again memory management is an issue and it is important to limit the number

of sets read. Consequently, the cost of reading a posting list or a set in data lakes will be more expensive

than considered in previous work, and an approach that reads all the posting lists of a large query set,

or reads too many candidates, will not be feasible.

It is important to note that LSH Ensemble can scale to very large sets. Since the result of the

top-k overlap set similarity search is the same as top-k containment set similarity search, it can also be

easily modified to solve the top-k problem, by trying decreasing containment thresholds, and ranking

the candidates in the search result.

In this chapter, we will present a new exact algorithm that we call JOSIE. Surprisingly, for reasonable

k, the new algorithm out-performs LSH Ensemble for query sizes up to 10K. It also out-performs the

state-of-the-art exact algorithms by a factor of 3.

3.2 Inverted Index, Prefix Filter, and Position Filter

In this section, we lay down the foundation on which our exact top-k algorithm is built. This includes

the inverted index, prefix filter, and position filter. We also introduce two baseline algorithms that solve

the top-k overlap set similarity search problem, and methods for calculating the cost of these algorithms.

3.2.1 Inverted Index and Dictionary

A lot of work on exact set similarity search uses basic techniques from Information Retrieval, among

which the most common one is the inverted index [47]. It has been widely used in search engines for

documents and web pages. Here, we describe inverted indexes in the context of overlap set similarity

search. For a collection of sets X1, X2, ... ∈ Ω, we extract the tokens (i.e., values) x1, x2, ... from all the

sets, and for each token, we build a posting list of pointers to the sets that contain the token, and these

posting lists together form an inverted index.

Example 3.2.1. For example, the following three sets can be used to build an inverted index containing

six posting lists.

X1 = {x1, x2, x3}
X2 = {x3, x4, x5}
X3 = {x2, x4, x6}

=⇒

x1 : {X1}
x2 : {X1, X3}
x3 : {X1, X2}
x4 : {X2, X3}
x5 : {X2}
x6 : {X3}

Chapter 3. JOSIE: Exact Top-K Joinable Table Search 38

An inverted index over a massive collection of sets with millions of tokens and millions of sets is very

large, so the posting lists may have to be stored on disk or distributed as scalability becomes an issue.

A query set may contain tokens not in the inverted index, and we need to determine this quickly. Thus,

solutions typically store a data structure called a dictionary, that contains each token, its frequency and

a pointer to its posting list.

Example 3.2.2. The dictionary for our three set example (Example 3.2.1) and their index is given

below.

Token Frequency Posting List Pointer

x1 1 1

x2 2 2

x3 2 3

x4 2 4

x5 1 5

x6 1 6

The dictionary can be encoded as a hash table, a search tree, or an array based on a sorted order of

tokens, for efficient look-up when processing query tokens [47].

Using the dictionary and inverted index there is a simple algorithm, that we call MergeList, for top-k

overlap set similarity search [47]. First, initialize a hash map to store the intersecting token counts of

candidates – sets that are discovered from the posting lists. For every query token, use the dictionary to

check if the token exists in the inverted index; if it exists then read the entire posting list and increment

counts for candidates in the list. Once all posting lists are read, we can sort the candidates by their

intersecting token counts, and return the k sets with highest counts. The total time (ignoring memory

hierarchy concerns) is ∑
xi∈Q∩U

L(fi) (3.1)

where U is the set of all tokens in the dictionary, fi is the frequency of token xi, and L(·) is the time to

read a posting list as a function of the length of the list.

MergeList’s read time is linear to the number of matched tokens. This is not a big issue when sets

have less than a few hundred tokens, however, in the context of joinable table search, the sets extracted

from columns can easily have thousands or even millions of tokens, as shown in Table 3.1. Thus, a better

approach could be to reduce the number of posting lists read.

3.2.2 Prefix Filter

Prefix filter, an idea proposed by Chaudhuri et al., to solve the threshold version of the set similarity

search problem [13]. Xiao et al. used it to develop a solution for the top-k problem [69].

To explain prefix filter, let us first start with the threshold problem. Assuming an intersection size

threshold, t, is given, and all candidates with intersection size greater than or equal to t must be returned.

For simplicity assume all tokens in the query Q are found in the dictionary. We only need to read posting

lists for a subset (any subset will do) of Q with size |Q| − t + 1. This is because for any candidate X

such that |Q ∩X| ≥ t,
|Q| − t+ 1 > |Q| − |Q ∩X|

Chapter 3. JOSIE: Exact Top-K Joinable Table Search 39

So even if all the tokens not in the intersection between Q and X (the count of which is the right-hand-

side above) are selected as part of the subset, there will still be one token in the subset belonging to the

intersection. A |Q|− t+1 subset of tokens is called a prefix of the query, and by reading the posting lists

of a prefix, we are guaranteed to not miss any candidate that meets the threshold t, in another words,

those sets pass the filter created by the prefix. However, for every candidate encountered in the posting

lists read, we must compute their exact overlap to verify if they indeed meet the threshold.

So how do we use prefix filter in solving the top-k problem? The main idea is that given an intersection

size threshold t, all candidates X such that |Q ∩X| ≥ t must be found in any subset (prefix) of posting

lists given the subset’s size is |Q| − t+ 1, and posting lists outside the subset do not need to be read.

Xiao et al. proposed a top-k algorithm that uses prefix filter. It uses a fixed-size min-heap to keep

track of the running top-k candidates [69]. The algorithm starts by reading the first posting list, and

for every new candidate encountered, it computes the exact intersection size. If the intersection size

is greater than the current k-th candidate’s intersection size, the new candidate is pushed to the heap

and the old k-th candidate is popped out. Otherwise the heap is not touched. The main trick of the

algorithm is to use the running k-th candidate’s intersection size as the threshold: after finishing reading

a posting list, we need to check the overlap of the current k-th candidate Xk, |Q∩Xk|, and if the number

of lists already read so far is equal to |Q| − |Q ∩ Xk| + 1, then the algorithm stops reading new lists

and returns the current running top-k candidates as the result. Since |Q∩Xk| is the threshold, the first

|Q| − |Q∩Xk|+ 1 posting lists become the prefix. We call this algorithm ProbeSet, because as opposed

to MergeList that reads only posting lists, it probes candidates as it encounters them.

Compared to MergeList, ProbeSet offers the benefit of reading fewer posting lists, at the expense

of probing some sets. However, the trade-off may be different in the context of searching joinable tables

where sets may be very large, potentially making reading sets more expensive than reading the skipped

posting lists.

3.2.3 Token Ordering and Position Filter

As described in the last section, ProbeSet reads and computes exact overlap for every new candidate

encountered. Xiao et al. introduced an optimization techinique called position filter that prunes out

candidates whose intersection sizes are less than a threshold before reading them [70]. For the rest of

this paper, ProbeSet always uses the position filter.

There are two requirements to use position filter. First, we must assign a global ordering (e.g.,

lexicalgraphic, length, etc.) for the universe of all tokens, and all sets (including the query set) must be

sorted by the global ordering. The choice of ordering does not affect the applicability of position filter.

however, as we will show in later sections, the ordering can affect performance. The order assignment

and sorting can be done during the indexing phase before building posting lists. The sorting of the query

set can be done at the same time when matching with the dictionary.

Given all sets are sorted by a global ordering, the second requirement is that each token’s posting

list must contain the positions of the token in the sets that contain it, as well as the sizes of the sets.

That is, instead of storing just the pointer to sets, each posting list also stores a position integer and a

size integer associated with each set.

Example 3.2.3. Using a similar example of sets and posting lists from Section 3.2.1, and assume the

Chapter 3. JOSIE: Exact Top-K Joinable Table Search 40

global ordering is indicated by a token’s subscript, the posting lists become:

X1 = {x1, x100, x200}
X2 = {x2, x5}
X3 = {x2}
X4 = {x2, ..., x100, x101}

=⇒

x1 : {(X1, 1, 3)}
x2 : {(X2, 1, 2), (X3, 1, 1),

(X4, 1, 100)}
x100 : {(X1, 2, 3), (X4, 99, 100)}
x200 : {(X1, 3, 3)}

In each entry of a posting list, the second integer is the position, and the third integer is the size of the

set.

So how can we apply the position filter to optimize ProbeSet? First, we have to sort the query

set according to the global token ordering, and read the posting lists by the same ordering. When we

encounter a new candidate X from the posting list of token xi (i.e., the i-th token in the sorted query

set), we can compute the upper-bound of its intersection size with the query set Q using the equation:

|Q ∩X| ≤ |Q ∩X|ub = 1 + min
(
|Q| − i, |X| − jX,0

)
(3.2)

Where jX,0 is the position of token xi in X, it is also the first overlapping token between Q and X, hence

the 0 in the subscript. Since both Q and X are sorted using the same global ordering and we are seeing

X for the first time, we know for sure that there is no intersecting token between Q and X before this

token at their i-th and jX,0-th positions respectively. So the upper-bound intersection size is one plus

the minimum of the number of remaining tokens in both sets. As we have discussed in Section 3.2.2, the

threshold for top-k search problem is the running k-th candidate’s intersection size, |Q ∩Xk|. Thus, if

|Q ∩X|ub ≤ |Q ∩Xk|, we can skip X, and ignore it in future encounters.

Another benefit of using the position filter is the it reduces the amount of a candidate set that needs

to be read. Since there is no intersecting token between Q and X before their first matching positions,

we only need to read the suffix X[jX,0 + 1:] to compute the exact intersection size.

Example 3.2.4. Consider Example 3.2.3’s posting lists and let the query set be Q = {x1, x2, x100, x200}
and k = 2. We first read the posting list of x1, which leads us to read and compute the exact intersection

size for X1 which is three. Then we read the posting list of x2. Since the heap is not full, we read X2,

compute the exact intersection size, and push (X2, 1) to the heap. The running heap is {(X1, 3), (X2, 1)}
and the k-th candidate’s intersection size is one.

Now the heap is full and we have running top-k, we can use the position filter to check the next

candidate X3. For X3, because |Q ∩X3|ub = 1 + min(4− 2, 1− 1) = 1 ≤ 1, it does not pass the position

filter. So we skip X3. For X4, because |Q ∩ X4|ub = 1 + min(4 − 2, 100 − 1) = 100 > 1, it passes the

position filter. So we read X4, and compute the exact intersection size which is 2. We pop and push the

heap, which is now {(X1, 3), (X4, 2)}.
We continue to read the third posting list x100, and we can skip both X1 and X4 as we have seen them

before. The prefix size is 4− 2 + 1 = 3, thus x100 is the last posting list. We skip x200 and terminate the

search.

Chapter 3. JOSIE: Exact Top-K Joinable Table Search 41

The total read time of the optimized ProbeSet is

p∗∑
i=1

L(fi) +
∑

X∈W\V
S(|X[jX,0 :]|) (3.3)

The first summation term is the total time spent in reading posting lists of the prefix, where p∗ is the

final prefix length and p∗ = |Q|−|Q∩X∗k |+1, where X∗k is the final k-th candidate in the final result. The

second summation term is the total time spent in reading all qualified candidates (W \ V) encountered

in the prefix, where W is the set of all candidates, and V is the set of candidates pruned by the position

filter. The position jX,0 is the first matching token position of X with Q. Lastly, S(·) is the time for

reading a set as a function of its size.

3.3 A New Framework

ProbeSet takes advantage of the prefix filter to read fewer posting lists, but requires extra work, which

is partially reduced by using position filter, to verify the candidates by reading and computing exact

intersection sizes. In this section, we present a novel framework that quantifies the benefits (i.e., reduced

cost) of reading posting lists and candidates, and an algorithm, called JOSIE, that uses this framework.

3.3.1 To Read or Not to Read

Example 3.3.1. Let us revisit Ex. 3.2.4. Suppose after reading posting list x2: instead of reading X2

before X3 and X4, let us read X4 first. The running heap after reading X4 is {(X1, 3), (X4, 2)}, and by

using the position filter, |Q∩X2|ub = 1+min(4−2, 2−1) = 2 ≤ 2, and |Q∩X3|ub = 1+min(4−2, 1−1) =

1 < 2, we can skip both X2 and X3 and terminate.

In this example, we read only 2 sets X1 and X4, compared to three sets in Example 3.2.4. The take

away is that we do not have to read a candidate immediately after we counter it. By prioritizing reading

some candidates before the others, we can “lift” the running k-th intersection size higher, increasing the

pruning power of the position filter, and read fewer candidates.

Example 3.3.2. Now suppose we make a different change after reading posting list x2: instead of reading

any sets, we continue to read posting list x100.

The posting list x100 does not give us any new candidates – both X1 and X4 are seen, however, the

new position information allows us to update the position filters for the seen candidates: for X4, its last

token we saw before x100 was x2, thus no intersecting tokens between x2 (position 1) and x100 (position

99), and the only possible intersecting tokens exist in the remaining 100−99 = 1 token after x100. Using

this new information, the position filter of X4 becomes |Q ∩X4|ub = 1 + 1 + min(4 − 3, 100 − 99) = 3,

and most importantly, we only need to read the last token from X4 (not the whole set) to compute its

exact intersection size. The rest is the same as Example 3.3.1: we can safely ignore X2 and X3 using

position filters, and terminate. The complete read sequence is shown in Figure 3.1.

In this example, we read in total three tokens from candidates, as shown in Figure 3.1: 2 from X1

and 1 from X4, while in Example 3.2.4 we read 2 + 1 + 99 = 102 tokens and in Example 3.3.1 we read

2 + 99 = 101 tokens. This example brings up two points: first, we do not need to read all candidates

before reading the next posting list, as long as we come back to them (when necessary) before terminating

Chapter 3. JOSIE: Exact Top-K Joinable Table Search 42

!

"#
"$
"%
"&

'# '$

'(

'#)) '$))

'#)#

1

2

3 4

5

Read sequence:
1. Posting list '#
2. Set "#
3. Posting list '$
4. Posting list '#))
5. Set "&

Figure 3.1: An example read sequence that alternates between reading posting lists and candidates.
Each set is a horizontal line, and each posting list is a vertical line, which connects common tokens
among sets.

search, we are still guaranteed to find the exact top-k; second, as Figure 3.1 shows, reading a posting list

(e.g., x100) has the benefit of potentially improving the position filters of unread candidates, in addition

to reducing the amount of data (i.e., number of tokens) we have to read from candidates to compute

exact intersection sizes.

As we can see from these two examples, reading a candidate and reading a posting list each has

its own benefit in terms of reducing the time spent in reading other posting lists or candidates. These

benefits have not been defined by the previous work and are data dependent. A quantitative comparison

of these benefits leads to an approach that alternates between reading posting lists and reading sets, as

illustrated by Figure 3.1. In the following sections, we will analyze these benefits quantitatively using a

framework based on statistical approximation techniques, and present an adaptive algorithm for exact

top-k overlap set similarity search that utilizes this framework.

3.3.2 Reading Candidates

As shown in Example 3.3.1, one potential benefit of reading a candidate is to increase the running k-th

intersection size (i.e., increase |Q∩Xk|) which is used by both the prefix filter and position filter. Recall,

the prefix filter prunes out posting lists (those beyond the prefix) and all unseen candidates in these lists.

On the other hand, the position filter prunes out seen candidates without reading them, by comparing

the upper-bound intersection size of a candidate with threshold |Q ∩Xk|.
Now the problem is how do we know whether a candidate can make it into the running top-k and

increase the threshold |Q ∩Xk|? Let X be the current candidate. Should we read it? We do not have

full information about all the tokens in X, however, we actually know quite a lot:

• iX,0 is the position in Q of the first token that intersects with X, where X first appears in the

posting list of that token;

• jX,0 is the position in X of the first token that intersects with the query;

• jX is the position in X of the most recent token that intersects with the query; and

• |Q[1 : i]∩X| is the number of intersecting tokens between Q and X up to and including the token at

the current position i in Q, where Q[1 : i] is the prefix of Q up and including token xi: x1, x2, ..., xi.

Chapter 3. JOSIE: Exact Top-K Joinable Table Search 43

Both jX and |X| can be found in the posting list entry of X. We read posting lists of Q’s tokens from

left to right according to the global token order, and keep track of iX,0, jX , |Q[1 : i] ∩ X| and |X| for

all seen candidates. As explained in the previous section, we do not have to read every candidate as we

encounter it, as long as we read it or prune it before terminating. Figure 3.2 illustrates.

Given this information about X, we can estimate its intersection |Q ∩X|, which, together with the

running top-k heap, can be used to approximate the new threshold |Q ∩Xk|.
If we consider the set Q∩X as a subset of Q[iX,0 :] – the subset of Q starting from the first matching

token with X, and assume the members of Q ∩X are uniformly distributed over Q[iX,0 :], an unbiased

estimator for |Q ∩X| is

|Q ∩X|est =
|Q[iX,0 : i] ∩X|
i− iX,0 + 1

× (|Q| − iX,0 + 1)

=
|Q[1 : i] ∩X| −(((((((|Q[1 : iX,0] ∩X|

i− iX,0 + 1
× (|Q| − iX,0 + 1)

=
|Q[1 : i] ∩X|
i− iX,0 + 1

× (|Q| − iX,0 + 1)

(3.4)

if we consider Q[iX,0 : i] as a random sample of Q[iX,0 :]. A proof of this can be done using techniques

introduced in Broder [9]. If the sample Q[iX,0 : i] is small, the variance will be high. Therefore, we should

read a few posting lists starting from position iX,0 before using this estimation.

Armed with the knowledge of |Q∩X|est, we can estimate the new threshold |Q∩X ′k|, where X ′k is the

new k-th candidate after reading X. We first compare |Q∩X|est with the current threshold |Q∩Xk|. If

|Q∩X|est ≤ |Q∩Xk|, then we assume the candidate X likely will not qualify for the running top-k, and

the current threshold is unchanged. If |Q ∩X|est > |Q ∩Xk|, we then look at what the new threshold

would be after pushing X to the heap (and popping Xk), by comparing |Q ∩ X|est with |Q ∩ Xk−1|,
where Xk−1 is the (k− 1)-th candidate (done in constant time with a binary heap). The estimation can

be summarized using Equation 3.5 below.

|Q ∩X ′k|est =

|Q ∩Xk| if |Q ∩X|est ≤ |Q ∩Xk|
|Q ∩X|est if |Q ∩X|est > |Q ∩Xk|

and|Q ∩X|est ≤ |Q ∩Xk−1|
|Q ∩Xk−1| if |Q ∩X|est > |Q ∩Xk−1|

(3.5)

Now using the new threshold, we can finally estimate the benefit of reading candidate X in terms

of time saved. As mentioned earlier, the benefit consists of two parts. The first part is from eliminated

posting lists through the prefix filter update. Let the current prefix length be p = |Q| − |Q ∩Xk| + 1,

and the new prefix length after reading X be p′ = |Q| − |Q ∩ X ′k|est + 1. Then the posting lists from

p′ + 1 to p inclusive will be eliminated, and the benefit is equal to the sum of the time to read these

posting lists.

Another benefit is from eliminating candidates by updating the position filter. The position filter for

a candidate Y has upper-bound intersection size:

|Q ∩ Y |ub = |Q[1 : i] ∩ Y |+ min(|Q| − i, |Y | − jY) (3.6)

This is different from Equation (3.2): the first term on the right is the number of intersecting tokens

Chapter 3. JOSIE: Exact Top-K Joinable Table Search 44

future

!",$

%"

&

'

!

past

!′

%"′%",$
Figure 3.2: The query set Q and candidate X after reading the posting list at position i. Pairs of dots
with solid lines represent intersecting tokens, pairs with dotted lines represent future intersecting tokens,
and non-intersecting tokens in both sets are not shown.

seen so far, as we do not read Y immediately after encountering it, this number may no longer be one.

If |Q ∩ Y | ≤ |Q ∩ X ′k|est, then candidate Y will likely be eliminated after reading X. Thus, using the

updated position filter, we can determine whether a candidate will be eliminated, and the benefit is the

sum of the time it would take to read the eliminated candidates.

Equation 3.7 gives the benefit of reading candidate X. The set Wi is all unread candidates at posting

list i and I(·) is an indicator function that evaluates to one only if the condition argument is true, and

zero otherwise.

Benefit(X) =

p∑
i=p′+1

L(fi)+∑
Y ∈Wi,Y 6=X

S(|Y [jY + 1:]|) · I(|Q ∩ Y |ub ≤ |Q ∩X ′k|est)
(3.7)

3.3.3 Reading Posting Lists

We now provide a quantitative framework for estimating the benefit of reading posting lists.

As before, let i be the position of the current posting list that we just read. As discussed in the

previous section, in order to avoid a large variance in estimating intersection size, we need to initially

read a few posting lists for each candidate. So posting lists are read in “batch”, and we use i′ to indicate

the position of the end, or the last posting list, of the next batch. This is shown in Figure 3.2, which also

shows the intersecting tokens between query Q and a candidate X. Let jX be the most recent position

in X whose token intersects with Q, and j′X be the position in the future after reading the next batch

of posting lists ending at i′.

Reading the next batch always improves (or at worse leaves unchanged) the pruning power of the

position filter, by tightening the upper-bound for all candidates. This can be understood using the future

Chapter 3. JOSIE: Exact Top-K Joinable Table Search 45

upper-bound intersection size for candidate X at i′:

|Q ∩X|′ub = |Q[1 : i′] ∩X|+ min(|Q| − i′, |X| − j′X)

= |Q[1 : i] ∩X|+ |Q[i+ 1: i′] ∩X|
+ min(|Q| − i′, |X| − j′X)

≤ |Q[1 : i] ∩X|+ |Q[i+ 1: i′]|
+ min(|Q| − i′, |X| − j′X)

≤ |Q[1 : i] ∩X|+ min(|Q| − i, |X| − jX)

= |Q ∩X|ub

(3.8)

Intuitively, reading the next batch verifies the exact intersection in that batch, and “exposes” the number

of tokens that do not intersect but have been consider in the upper-bound. So the total number of tokens

we can count toward the upper-bound is reduced, and the upper-bound is lowered.

Given the new upper-bound |Q∩X|′ub, by comparing it with the current k-th candidate’s intersection

size, or the current threshold, |Q ∩Xk|, we know for every candidate X whether it would be eliminated

or not. If not, we may still have some benefit because we know we would only need to read the tokens

in X[j′X + 1:].

So now the question is how do we estimate |Q∩X|′ub. Calculating |Q∩X|′ub requires |Q[i+1: i′]∩X|,
the number of intersecting tokens between Q and X in the next batch, and j′X , the future position of

the last intersecting token.

First, we can estimate |Q[i + 1: i′] ∩ X| using the same method we used for the total intersection

size, |Q ∩ X|, in Equation 3.4, by assuming uniform distribution of intersecting tokens over the range

Q[iX,0 :].

|Q[i+ 1: i′] ∩X|est =
|Q[iX,0 : i] ∩X|
|Q| − iX,0 + 1

· (i′ − i) (3.9)

Since we keep track of iX,0 and |Q[iX,0 : i] ∩X| for every candidate X, we can compute this estimate.

Second, we can estimate j′X by first leveraging the fact that the number of intersecting tokens between

i+ 1 and i′ in Q must be equal to that between jX + 1 and j′X in X, as shown in Figure 3.2. Then, we

can apply the same estimation method for intersection size in Equation 3.9 to create an approximate

equality, from which we derive an expression for j′X,est.

|Q[i+ 1: i′] ∩X|est ≈ |Q ∩X[jX + 1: j′X]|est
(((((((|Q[iX,0 : i] ∩X|
|Q| − iX,0 + 1

· (i′ − i) ≈((((((((|Q ∩X[jX,0 : jX]|
|X| − jX,0 + 1

· (j′X − jX)

j′X,est = jX+
i′ − i

|Q| − iX,0 + 1
· (|X| − jX,0 + 1)

(3.10)

In the above derivation, since |Q[iX,0 : i] ∩X| is exactly the same as |Q ∩X[jX,0 : jX]| (see Figure 3.2),

we can cancel them out on both sides of the equation.

Substituting |Q[i+ 1: i′]∩X|est and j′X,est for |Q[i+ 1: i′]∩X| and j′X , respectively, in Equation 3.8,

Chapter 3. JOSIE: Exact Top-K Joinable Table Search 46

we can obtain the estimation for the future upper-bound of X in the position filter.

|Q ∩X|′ub,est = |Q[1 : i] ∩X|+ |Q[i+ 1: i′] ∩X|est
+ min(|Q| − i′, |X| − j′X,est)

(3.11)

Equipped with the estimation for the upper-bound, we can finally summarize the benefit of reading

the next batch of posting lists for tokens Bi+1,i′ = xi+1, ..., xi′ .

Benefit(Bi+1,i′)

=
∑
X∈Wi

S(|X[jX :]|) · I(|Q ∩X|′ub,est ≤ |Q ∩Xk|)

+
(
S(|X[jX :]|)− S(|X[j′X :]|)

)
· I(|Q ∩X|′ub,est > |Q ∩Xk|)

(3.12)

The first term is the time spent on reading candidate X, corresponding to the cost saved due to the

elimination of X by reading the next batch of posting lists. The second term is the reduction in read

time for reading X when it is not eliminated, but due to an updated position filter, fewer of its tokens

need to be read. As in Equation 3.7, I(·) is an indicator function. It is important to note that, the

benefit of reading posting lists is always non-negative.

3.3.4 An Adaptive Algorithm

Given our quantitative framework for estimating the respective benefits of reading a candidate and

reading a batch of posting lists (in terms of the amount of read time saved), we now calculate the net

cost as the difference between the read time incurred and the read time saved.

NetCost(X) = S(|X[jX + 1:]|)−Benefit(X)

NetCost(Bi+1,i′) =

i′∑
x=i+1

L(fx)−Benefit(Bi+1,i′)
(3.13)

Clearly, the lower the net cost, the better the performance.

We now present our algorithm, JOSIE (JOining Search using Intersection Estimation), that priori-

tizes reading posting lists or candidates based on net cost computed using estimated intersection sizes.

The pseudo code is shown in Algorithm 2.

Starting from reading the first batch of posting lists, the algorithm relies on the functions

NetCost(X) and NetCost(Bi+1,i′) to determine whether to read the best unread candidate, ranked

by net cost, or to read the next batch of posting lists. Each time a candidate is read, the algorithm

updates a running top-k heap and the prefix filter. Each time posting lists are read, the algorithm

updates the pointers. Either way, after the read, the algorithm applies the position filter and eliminates

unqualified candidates.

Since the threshold |Q ∩Xk| is only valid (or non-zero) after at least k candidates are read, JOSIE

always chooses to read candidates before the top-k heap is full (|h| = k), unless it is reading the first

batch (u = ∅ and X = ∅).
The algorithm terminates when the posting list pointer i is outside of the prefix filter range (i > p),

and there is no unread candidate (u = ∅). If i > p but u 6= ∅, it means that the algorithm still has to

finish the remaining candidates by either reading posting lists or reading sets.

Chapter 3. JOSIE: Exact Top-K Joinable Table Search 47

Algorithm 2 Algorithm JOSIE using the cost model

1: procedure JOSIE(U, I,Q, k, λ). U, I are the dictionary and inverted index, and λ is the batch size
2: Q← Q ∩ U . Use the dictionary
3: x1, x2, ..., xn ← Sort(Q) . Apply global ordering
4: h← {} . h is the heap for running top-k sets
5: u← {} . u is the hash map of unread candidates
6: i← 1, i′ ← 1 + λ, Xk ← ∅ . Xk is the k-th candidate
7: p← |Q| − |Q ∩Xk|+ 1
8: while i ≤ p or u 6= ∅ do
9: X ← Best(u)

10: if |h| = k and NetCost(X) > NetCost(Bi+1,i′) or (u = ∅ and X = ∅) then
11: u← u ∪Read(I,Bi+1,i′) . Read posting lists
12: i← i′, i′ ← i′ + λ
13: else
14: TryPopPush(h, k,X, |Q ∩X|) . Read set X
15: Xk, |Q ∩Xk| ← Head(h)
16: p← |Q| − |Q ∩Xk|+ 1
17: end if
18: u← PositionFilter(u) . Eliminate candidates
19: end while
20: return PopAll(h)
21: end procedure

The total time of JOSIE is

p∗∑
i=1

L(fi) +

p∗+δ∑
i=p∗+1

L(fi) +
∑

X∈W\V ∗
S(|X[jX :]|) (3.14)

The formula is similar to ProbeSet’s (Equation 3.3) however it has a few differences. First, in ProbeSet,

no more posting lists are read after the last position in the final prefix, indicated by p∗, while in our

algorithm, the net cost of reading the next batch of posting lists may be less than reading the next

candidate, leading to more posting lists read. We use δ to indicate the extra posting lists read after the

final prefix position. It is important to note that the extra posting lists are only used to help reduce the

read time of existing candidates, and do not introduce any new candidate, as those candidates will be

pruned automatically by the prefix and position filters.

The second difference is the last term. Instead of reading every qualified candidate as we encounter

it as in ProbeSet, we read candidates in increasing order of their net costs, and thus the candidates

with the highest pruning effect (i.e., benefit) get read first. Thus, we are always going to read no more

candidates than ProbeSet and often many fewer. That is, V ⊆ V ∗, where V is the set of candidates that

are pruned at first encounter only, and V ∗ is the set of all candidates that are pruned in our algorithm.

Note that V ∗ = ∅ is extremely unlikely as it happens only when the candidates appear in the order of

strictly increasing intersection sizes with the query.

The last difference is the read time for each candidate. ProbeSet reads a qualified candidate at first

encounter, thus the read time is S(|X[jX,0 :]|). Our algorithm, on the other hand, reads a candidate at

some posting list after the first encounter, due to reading in batch and using the cost model. Thus, we

will almost always have fewer tokens to read for any candidate (in the worst case read the full set like

ProbeSet). Thus less time is spent on reading the candidates.

Chapter 3. JOSIE: Exact Top-K Joinable Table Search 48

In conclusion, our algorithm reads fewer candidates than ProbeSet, and often a smaller portion of

those candidates. This reduction in read time is at the expense of reading the extra δ number of posting

lists. However, due to the use of cost model, every step of the algorithm chooses the direction with the

least net cost, thus the total cost of reading the extra posting lists is likely much less than the reduced

cost of reading candidates.

3.4 A Practical Search Engine

We now present several optimizations that improve the performance of JOSIE, and practical considera-

tions for estimating read cost efficiently.

3.4.1 Distinct Posting Lists

Although the cost model works with any global order, for this work, we use increasing frequency order

as the global order, because it tends to minimize the number of candidates in the prefix, as suggested

by Chaudhuri et al. [13]. Another advantage of using frequency order is that duplicate posting lists are

together, and we use this to further optimize the search engine.

Two posting lists are duplicates if they point to the same sets. Because of the frequency ordering

(and within a frequency we order lists by some fixed ordering on sets), duplicate lists will be adjacent.

Importantly, we observed many duplicate posting lists in both Open Data and Web Tables. The statistics

are in Table 3.2.

Table 3.2: Posting lists in Open Data and Web Tables.

#Original Tokens % Tokens with Dup # Tokens After De-dup

Open Data 563,320,456 98% 9,003,658
Web Tables 184,644,583 83% 45,395,793
Enterprise Data 3,902,604 99.87% 9,133

Even though reading multiple duplicate posting lists does not yield more candidates than reading

just one, it still provides the benefit of reducing the cost of reading existing candidates, as discussed in

Section 3.3.3. So how can we avoid reading duplicate lists, while still getting the benefit?

To avoid reading duplicate posting lists, we assign each token in the dictionary a duplicate group ID,

which is a unique identifier for a group of duplicate posting lists. So when matching a query with the

dictionary, a duplicate group ID is also mapped to every query token, in addition to the frequency and

posting list pointer.

The cost model assumes the posting lists of a query set are read sequentially in the frequency order

of their tokens. When going through the posting lists, we read just the posting list of the last token in

each group present in the query. This can be done by checking if the next token has the same or different

duplicate group ID as the current one. If the next one has the same duplicate group ID, then the posting

list can be skipped. This idea can be illustrated using the example in Figure 3.3: the first and second

posting lists with duplicate group ID 1 are skipped, and the first two posting lists with duplicate group

ID 5 are also skipped.

We modified our cost model to handle duplicates. First, we count groups, rather than lists when

forming batches and ignore the skipped posting list in calculating the read cost. Second, we need to

Chapter 3. JOSIE: Exact Top-K Joinable Table Search 49

Group IDs 1 1 1 4 5 5 5 6 7

Query
Tokens

Posting
Lists …

Reads

Figure 3.3: A read sequence of distinct posting lists.

account for the number of posting lists skipped when reading the last posting list in the same duplicate

group. This ensures that the information about candidates (see Section 3.3.2), such as the number of

intersecting tokens see so far, is updated correctly.

3.4.2 Indexing Data Lakes

In this section, we discuss how we build an inverted index from a data lake in three major steps,

implementation details, and a strategy for incremental updates.

Extracting Raw Tokens

In the first step, we extract sets from tables in the data lake. Each set is assigned a SetID, a unique

integer identifier for the original table and column from which the set is extracted. Each column (set)

value is a token. Sets are flattened into a mapping called RawTokens of tuples (RawToken, SetID).

Building Token Table

In the second step, we build a mapping called TokenTable, that maps every token RawToken to a unique

integer ID, TokenID, which indicates the token’s position in the global order, and an integer duplicate

group ID, GroupID. Each tuple of the mapping is (RawToken, TokenID, GroupID).

To build a TokenTable, we first build posting lists of sorted SetID, by grouping tuples in RawTokens

by RawToken. Then we sort all posting lists by length (i.e., token frequency), MurmurHash3 hash values2

of the posting lists, and then the posting lists themselves. The use of MurmurHash3 hash helps us to

avoid most of the expensive pair-wise comparisons of same-length posting lists that did not have hash

collision. Then we use the sorted position of each posting list as the TokenID of the corresponding

RawToken to obtain the mapping (RawToken, TokenID). It is important to note that, even though we

are using token frequency as the global order, our algorithm described in Section 3.3.4 works for any

other global order, for example, the original positions of posting lists before sorting. In order to leverage

the distinct list optimization described in Section 3.4.1, however, it is convenient to use frequency order.

As described in Section 3.4.1, each duplicate group spans a consecutive interval in the global order

by frequency. To create duplicate groups, we must identify their starting and ending positions. The

starting positions are identified by comparing every pair of adjacent posting lists (lower and upper) in

the global order: for a pair, if the lower and upper posting lists are different, then the upper posting list’s

TokenID is the starting position of a new duplicate group. The first duplicate group’s starting position

2https://github.com/aappleby/smhasher

Chapter 3. JOSIE: Exact Top-K Joinable Table Search 50

Table 3.3: Indexing benchmark sets using Apache Spark on a cluster of 3 worker nodes each with 100
GB of memory and 63 cores.

Open Data Web Tables

Input RawTokens 37.3 GB 51.4 GB
Output Posting Lists 51.3 GB 36.0 GB
Output Integer Sets 10.6 GB 16.3 GB
Duration 2.4 h 1.1 h
Max Per-Task Peak Memory 7.1 GB 9.1 GB

is 0. Similary, the ending positions are identified by scanning every pair of adjacent groups’ starting

positions: the upper group’s starting position is the ending position of the lower duplicate group. Once

all the starting and ending positions are identified, we can generate the GroupID as the groups’ positions

in the sorted order, and the mapping (TokenID, GroupID) by enumerating from the starting to the

ending position of every group.

Lastly in this step, we join the two mappings, (RawToken, TokenID) and (TokenID, GroupID) to

obtain TokenTable.

Creating Integer Sets

The last step is to convert all tokens in sets to integers (TokenID). We use integers because computing

intersection between integer sets is faster than between string sets, and storage systems such as Postgres3

can read integer sets efficiently. Another benefit of using integer sets is better estimation of read cost,

which is discussed in Section 3.4.3.

We create integer sets by first joining mappings RawTokens and TokenTable on RawToken, and then

grouping by SetID to get sets while selecting only TokenID and GroupID. Each set is sorted by TokenID

to reflect the global order. Lastly, we create the posting lists as shown in Section 3.2.3 from the integer

sets.

Implementation and Performance

We implemented the indexing algorithm using Apache Spark4. The input is the RawTokens table of tuples

(RawToken, SetID), and the outputs are the integer sets and posting lists. Apache Spark automatically

creates a series of tasks, some with inter-dependencies, for parallel execution on a cluster. Since Spark

tasks can be scheduled one after another or simultaneously, the maximum per-task peak memory usage

indicates the minimum amount of memory that must be available on each worker node before running

into out-of-memory error. Table 3.3 lists the results on input and output sizes, duration, and maximum

per-task peak memory.

Handling Incremental Updates

The posting lists and integer sets in our index can be updated incrementally. To do so we must maintain

the global order of tokens to ensure the correctness of our algorithm as described in Section 3.3.4.

3https://www.postgresql.org/docs/10/static/intarray.html
4https://spark.apache.org

Chapter 3. JOSIE: Exact Top-K Joinable Table Search 51

Any update to the index, such as adding a new set, a new token, or removing a token, can be

expressed as a sequence of ADD and DELETE operations given (RawToken, SetID) tuples. For ADD, there

are 4 different cases:

Case 1: RawToken and SetID both exist. This requires no action because a set consists of unique

tokens.

Case 2: RawToken exists, and SetID is new. We create a new integer set using the existing TokenID.

and then append to the posting list of TokenID a new entry (SetID, 0, 1). See Section 3.2.3 for posting

list entry. Due to the append, we invalidate the duplicate group ID of this posting list. The global order

is unchanged.

Case 3: RawToken is new, and SetID exists. Because the token is not in our index, we assign a new

integer TokenID by incrementing the maximum existing TokenID, effectively expending the global order

by one and keeping the existing positions unchanged. Because the new token is at the end of the global

order, we append its new TokenID to the end of the existing set given by the SetID. For existing posting

lists of the set, we update the set’s entry by incrementing the size: (SetID, ∗, size + 1) – because the

new token is appended, the existing tokens’ positions are unchanged. Lastly, we create a new posting

list for the new token with entry (SetID, size, size+ 1).

Case 4: RawToken and SetID are both new. This is the combination of the previous two cases.

We first assign a new TokenID to the RawToken, then create a new integer set, and lastly create a new

posting list with entry (SetID, 0, 1). The global order of tokens is expanded by one, but the rest is

unchanged.

This incremental update strategy can also be applied directly to an empty index and the resulting

global order would be the order in which tokens are added.

For DELETE, we first remove the entry from the posting list corresponding to RawToken, and update

the entries in other posting lists of the tokens in the set: some positions need to be shifted by one, and

the sizes are decremented by one. Then we also remove the token from the integer set.

In summary, the incremental update strategy keeps the global order of existing tokens unchanged,

ensuring the correctness of our search algorithm (Section 3.3.4). The caveat is that we cannot assign

duplicate group IDs for the newly added posting lists as well as those with append or removal, because

finding the duplicate groups requires sorting all posting lists. Thus, we cannot skip the new and updated

posting lists even if they are duplicates. This only affects the query performance, and since the tables in

data lakes are often used for analytic tasks, updates are rare. The index can keep track of the number

of posting lists affected and statistics on query runtimes, so that it can inform the system administrator

to choose an appropriate time to rebuild the index for better performance.

3.4.3 Estimating Costs

Throughout Section 3.3, we assume the cost of reading a candidate and a posting list can be calculated

using functions S(·) and L(·) respectively. What function is suitable here?

There are different components involved when a candidate or a posting list is read. First, there is

index access time – the time to find where the set or posting list is located in the storage layer (e.g.,

disk, memory, etc.) given its pointer. For Open Data, since there are more than 563M posting lists, this

time can be significant. Then, there is the time to read the set or posting list from the storage layer,

and the time to transfer the data through network or inter-process communication, which also involves

serialization and deserialization. These components can be collectively called read time.

Chapter 3. JOSIE: Exact Top-K Joinable Table Search 52

0 500000 1000000

Set Size

0

500

1000

1500
R

ea
d

C
o
st

(m
s)

0 2000 4000

List Length

0

5

10

(a) Samples of read costs of sets (left) and posting lists
(right) in Open Data and fitted lines.

0 5000 10000

Set Size

0

5

10

R
ea

d
C

o
st

(m
s)

0 5000 10000

List Length

0

5

10

15

20

(b) Samples of read costs of sets (left) and posting lists
(right) in Web Tables (bottom), and fitted lines.

Figure 3.4: Estimating read costs of sets and posting lists using samples

The index access time is likely a constant, especially with popular indexes such as B+ Trees used by

many storage layers. On the other hand, the read time is proportional to the size of data. When the

storage system is disk-based, read may be accelerated through sequential I/O, however, the data still

needs to be transferred to the search engine process, and that takes time proportional to the size of the

data.

Thus, we use linear functions to express the read cost:

S(|X|) = s0 + s1 · |X|, L(fi) = l0 + l1 · fi (3.15)

Where s0 and l0 are the index access times, and s1 and l1 are the factors for the read times.

In order to estimate the parameters in Equation 3.15, we sampled 1,000 sets and 1,000 posting lists

and measure the I/O times, and then fit the functions to the sampled data points. Our experiments will

use the same two data lakes from Chapter 2, namely Open Data and Web Tables. Figure 3.4a and 3.4b

show the samples and fitted lines from sets and posting lists in Open Data and Web Tables, respectively.

3.5 Experiments

We now demonstrate the performance of JOSIE through experiments using real-world data lakes, and

compare it to the state-of-the-art in both exact and approximate approaches.

3.5.1 Data Lakes

We used two data lakes in our experiments, Open Data (see Section 2.5.1) and Web Tables, (a public

corpus [40]). We also removed all numerical values, as they create casual joins that are not meaningful.

The characteristics of the extracted sets are shown in Table 3.1. Web Tables has 219× more sets than

Open Data, while its average set size is much smaller (10 vs. 1,540). This means reading a set from

the Web Table lake is usually cheaper. Tokens in Web Tables appear in more sets overall than those in

Open Data. This implies that the posting lists of Web Tables tokens are often longer, and thus more

expensive to read.

Chapter 3. JOSIE: Exact Top-K Joinable Table Search 53

3.5.2 Query Benchmarks

We generated three query benchmarks from each data lake. Each benchmark is a set of queries (sets)

selected from a size range in order to evaluate performance on different query sizes.

For Open Data, we used the same query benchmarks as described in Section 2.5.2: three benchmarks

from ranges: 10 to 1k, 10 to 10k, and 10 to 100k.

For Web Tables, we used different ranges for benchmarks: 10 to 100, 10 to 1k, and 10 to 5k. The

last range only has 5 intervals. This is because the sets in Web Tables tend to be much smaller than

Open Data, and there are not enough sets in the 5k to 10k range to sample 100 sets for every interval.

In order to make up for the total, we sampled 200 sets for each of the 5 intervals.

For a query set Q, and dictionary of all tokens U in the index excluding the query, we used |Q ∩ U |
instead of |Q| to decide which range the query belongs to. This is because any token that only exists

in Q, but not in U will not have a posting list, and add uncontrolled noise to the experiment when we

want to measure the effect of the number of posting lists on performance.

We have made the benchmarks available online5.

3.5.3 Setup

We build an inverted index and dictionaries for each of the Open Data and Web Tables repositories using

Apache Spark6. The posting lists and sets are then stored in a PostgreSQL7 database as two separate

tables, with B+ Tree indexes built on tokens and sets. All experiments are conducted on a machine with

two Intel R© Xeon R© CPU E5-2620 v4 @ 2.10GHz (16 cores), 128 GB DDR4 memory, and an Intel R© SSD

DC S3520 3D MLC.

3.5.4 Algorithms

In our experiments, we will compare the following five algorithms.

MergeList-D This is based on the MergeList algorithm introduced in Section 3.2.1, modified to read

only the distinct posting lists using the technique introduced in Section 3.4.1.

ProbeSet-D This is based on the ProbeSet algorithm introduced in Section 3.2.3, modified to also

read only distinct posting lists. This algorithm relies on prefix filter to limit the number of posting lists

to read, and uses position filter to reduce the number of candidates to read.

LSHEnsemble-60 This is LSH Ensemble (from Chapter 2) using 32 partitions. |Q∩X||Q| → R[0.0, 1.0],

The original algorithm only supports threshold-based search, so we modified the algorithm to support

top-k search by trying a sequence of decreasing thresholds starting at 1.0 with a step size equal to 0.05,

until enough candidates have been acquired. Since this is an approximate algorithm, it can be extremely

fast by just returning any candidate. So for a fair comparison we require the algorithm to keep acquiring

and reading (distinct) candidates until a minimum recall of 60% is reached for the top-k candidates.

The ground truth is provided to the algorithm for every query.

LSHEnsemble-90 This is the same algorithm as the previous one, with the only difference being the

minimum recall is 90%. A higher minimum recall means the algorithm has to read more candidates in

order to improve accuracy.

5https://github.com/ekzhu/set-similarity-search-benchmarks
6https://spark.apache.org
7https://www.postgresql.org

https://github.com/ekzhu/set-similarity-search-benchmarks
https://spark.apache.org
https://www.postgresql.org

Chapter 3. JOSIE: Exact Top-K Joinable Table Search 54

0.0

0.5

1.0

1.5

2.0

0

2

4

6

0

5

10

k
=

5

0.0

0.5

1.0

1.5

2.0

M
ea

n
D

u
ra

ti
on

(s
ec

)

0

2

4

6

0

5

10

k
=

1
0

250 500 750

Query Size

0.0

0.5

1.0

1.5

2.0

2500 5000 7500

Query Size

0

2

4

6

25000
50000

75000

Query Size

0

5

10

k
=

20

MergeList-D ProbeSet-D JOSIE-D

Figure 3.5: Mean query time, Open Data benchmark.

JOSIE-D This is the cost-based algorithm presented in Section 3.3.4, with the distinct posting list

optimization.

3.5.5 Open Data Results

We compare the running time of JOSIE-D with the baseline algorithms MergeList-D and ProbeSet-D on

benchmarks generated from Open Data tables. The result is shown in Figure 3.5. Each row corresponds

to a different k, which is the number of top results to retrieve, and each column corresponds to a different

query benchmark (i.e., 1k, 10k, and 100k). Each point is the mean running time of benchmark queries

from a single interval (i.e., 100 queries).

ProbeSet-D’s performance deteriorates quickly as k increases. This is because with larger k, the

prefix filter is larger and has less pruning power, as the k-th candidate’s intersection size can be much

lower. Thus, ProbeSet-D must read more posting lists and all the candidates appear in those posting

lists. In contrast, MergeList-D simply reads all the distinct posting lists and none of the candidates,

regardless of k. So its performance is constant with respect to k.

We can also observe that ProbeSet-D’s running time is much more volatile than MergeList-D, as

shown in the first row of Figure 3.6, which plots the standard deviation of query duration. This is

because ProbeSet-D reads all candidates it encounters and has no control over the sizes of candidates it

reads, thus its running time is heavily dependent on the distribution of posting list lengths (i.e., token

frequencies) and set sizes.

Now we look at our proposed algorithm JOSIE-D. It out-performs both ProbeSet-D and MergeList-D,

on all benchmarks and all ks, often by 2 to 4 times, except for the k = 20 and 1k benchmark, on which

it is on par with MergeList-D.

Chapter 3. JOSIE: Exact Top-K Joinable Table Search 55

0

1

2

3

S
td

.
o
f

D
u

ra
ti

on

0

2

4

6

0

5

10

0

100

200

300

400
M

ea
n

#
of

S
et

s
R

ea
d

0

250

500

750

1000

0

50

100

150

200

0

200

400

600

M
ea

n
#

o
f

L
is

ts
R

ea
d

0

1000

2000

3000

4000

0

5000

10000

15000

20000

250 500 750

Query Size

100

200

300

400

M
ea

n
F

o
o
tp

ri
n
t

(K
B

)

2500 5000 7500

Query Size

0

250

500

750

1000

25000
50000

75000

Query Size

0

500

1000

1500

2000

MergeList-D ProbeSet-D JOSIE-D

Figure 3.6: Standard deviation of durations, mean number of set and posting lists read per query, and
query memory footprint on Open Data benchmark (k = 10).

Let us discuss the effect of increasing k on JOSIE-D, as it also reads candidates, similar to ProbeSet-D.

The running time of JOSIE-D increases with k, but at a much slower rate than ProbeSet-D. This is

because unlike the latter, JOSIE-D does not read all the candidates it encounters – it always reads the

next candidate with the lowest net cost (and likely carrying better pruning power, or benefit) evaluated

by the cost model, and aggressively prunes out unqualified candidates using the position filter.

We compare the mean number of sets read by ProbeSet-D and JOSIE-D per query in the second row

of Figure 3.6. It is evident that JOSIE-D drastically reduced the sets read by an order of magnitude

(from well over 100 to around 30). This shows that the cost model is extremely effective in choosing the

best next candidate to read, which causes much more aggressive pruning. We also compare the mean

number of posting lists read in the third row of Figure 3.6, which shows that JOSIE-D reads more posting

lists than ProbeSet-D. This is because the net cost of reading posting lists may be lower than reading

the next best candidates, as discussed in Section 3.3.3.

What happened at k = 20 on the 1k benchmark? The estimation time becomes a major fraction of

the total time when read time is small – this happens when the candidates are small in size, but large in

total number as happens with small queries at large k. The estimation time is linear in the total number

Chapter 3. JOSIE: Exact Top-K Joinable Table Search 56

1

2

3

0

2

4

1

2

3

4

5

k
=

5

1

2

3
M

ea
n

D
u

ra
ti

on
(s

ec
)

0

2

4

1

2

3

4

5

k
=

1
0

25 50 75

Query Size

1

2

3

250 500 750

Query Size

0

2

4

2000
4000

Query Size

1

2

3

4

5

k
=

2
0

MergeList-D ProbeSet-D JOSIE-D

Figure 3.7: Mean query time on WebTable benchmark.

of candidates, as JOSIE-D must always go through all unread candidates. In this case, MergeList-D

may benefit from the fact that it does not read any candidate, and the number of posting lists to read

is also small for small queries.

We also compare the memory footprint of query processing for the three algorithms, in the fourth

row of Figure 3.6. For the detail of memory footprint measurement, please refer to Section 3.5.8. Based

on the results, ProbeSet-D uses the most memory, and JOSIE-D comes in second. This is due to the

large sets in the Open Data benchmark, as the two algorithms both need to allocate buffers for reading

candidate sets. The relatively short posting lists in the Open Data benchmark also lead to the low

memory usage of MergeList-D.

3.5.6 Webtable Results

In comparison with Open Data, Web Tables has different characteristics – it has 219× more sets, but

much smaller sets (average size 10 versus 1,540), and its tokens have higher frequencies overall (average

4 versus 23), leading to larger posting lists that are more expensive to read.

The effect of large posting lists directly impacts the performance of MergeList-D, which must read

all distinct posting lists for a query set. As shown in Figure 3.7, it has the longest running time, and can

be 3× slower than ProbeSet-D and JOSIE-D on k = 5. On the other hand, ProbeSet-D benefits from

the small set sizes in Web Tables, as the time saved from reading fewer large posting lists is larger than

the time to read tiny sets. As a consequence, for table repositories with similar distributions to the Web

Table benchmark – high token frequencies and small set sizes – search algorithms making use of prefix

filter (e.g., ProbeSet-D and JOSIE-D) would benefit the most from the distribution.

What about JOSIE-D? It still out-performs the other two algorithms, as shown in Figure 3.7, with

Chapter 3. JOSIE: Exact Top-K Joinable Table Search 57

2

4

6

8

S
td

.
o
f

D
u

ra
ti

on

0

2

4

6

8

2

4

6

8

0

2000

4000

6000

M
ea

n
#

o
f

S
et

s
R

ea
d

0

1000

2000

3000

0

1000

2000

0

20

40

60

80

M
ea

n
#

of
L

is
ts

R
ea

d

0

200

400

600

0

500

1000

1500

25 50 75

Query Size

0

1000

2000

3000

M
ea

n
F

o
ot

p
ri

n
t

(K
B

)

250 500 750

Query Size

0

1000

2000

3000

4000

2000
4000

Query Size

0

2500

5000

7500

MergeList-D ProbeSet-D JOSIE-D

Figure 3.8: The standard deviation, number of sets and posting lists read, and query memory footprint
on Web Table benchmark (k = 10).

lower variance as shown in the first row of Figure 3.8. The most interesting part is that it still mostly

out-performs ProbeSet-D despite the high estimation time caused by having many candidates to look

through. The second row of Figure 3.8 shows that the number of candidates in Web Tables is much

higher than Open Data, approximately 15× on the 1k benchmark, for example. JOSIE-D still reads an

order of magnitude fewer candidates than ProbeSet-D, so the estimation time is largely compensated

for by the time saved from pruned candidates.

The fourth row of Figure 3.8 shows the memory footprint of the three algorithms on the Web Table

benchmark. The result is very different from the Open Data benchmark: MergeList-D comes in first in

memory usage, exceeding the other two by an order of magnitude for query sizes larger than 250. This

is due to the longer posting lists in the Web Table benchmark, making it much more costly space-wise

to read posting lists. The smaller set sizes reduce the memory usage of both ProbeSet-D and JOSIE-D,

however, because the latter still reads more posting lists (δ more, as explained in Section 3.3.4), it tends

to use more memory.

One interesting result is that JOSIE-D uses a lot more memory for smaller queries than larger ones.

This is because the algorithm tends to read posting lists rather than sets for small queries, as shown in

the second row of Figure 3.8, and posting lists require larger buffer than sets in this benchmark. JOSIE-D

Chapter 3. JOSIE: Exact Top-K Joinable Table Search 58

0.0

0.5

1.0

0

1

2

3

0

2

4

6

8

k
=

5

0.0

0.5

1.0
M

ea
n

D
u

ra
ti

o
n

(s
ec

)

0

1

2

3

0

2

4

6

8

k
=

10

250 500 750

Query Size

0.0

0.5

1.0

2500 5000 7500

Query Size

0

1

2

3

25000
50000

75000

Query Size

0

2

4

6

8

k
=

2
0

LSHEnsemble-60 LSHEnsemble-90 JOSIE-D

Figure 3.9: Mean query time of LSH Ensemble (32 partitions, modified for top-k) and JOSIE on Open
Data benchmark.

also uses more memory than MergeList-D for those small queries, because unlike MergeList-D, it needs

to read token positions and set sizes in addition to set IDs (see Section 3.5.8).

3.5.7 Comparison with LSH Ensemble

The most interesting comparison comes from JOSIE-D and LSH Ensemble algorithms (LSHEnsemble-60

and 90) using 32 partitions. Figure 3.9 shows the mean query durations. The LSH Ensemble query

duration includes the time of retrieving candidates from the LSH index and the time to read and

compute exact intersection sizes for candidates. The common key to the success of LSH algorithms is

that the first stage of candidate retrieval is extremely fast and can be very selective, such that the total

query duration can be lower than exact algorithms.

However, based on Figure 3.9, we observe that the performance of JOSIE-D can beat LSH Ensemble by

2× on the 1k benchmark for k = 5 to k = 10. This is surprising, because LSH Ensemble is an approximate

algorithm (though we have modified it to achieve a minimum 60% recall for LSHEnsemble-60 and 90%

for -90) while JOSIE-D gives exact results. As query size increases, for example, on the 100k benchmark,

LSH Ensemble begins to out-perform JOSIE-D by a large margin. This is also true with increasing k, as

at k = 20 on the 100k benchmark, LSH Ensemble out-performs JOSIE-D by 3.5×.

The reason for JOSIE-D being faster at smaller k is actually related to observations made by Bayardo

et al. who showed experimentally that prefix-filter-based exact techniques can be faster than LSH [5].

This is because the prefix filter can be much more selective than LSH index at high thresholds or small

k, leading to very few posting list reads and smaller number of candidate reads.

Why is LSH Ensemble slower than JOSIE-D for small queries? Our investigation shows that this

Chapter 3. JOSIE: Exact Top-K Joinable Table Search 59

0

1

2

3

4

S
td

.
o
f

D
u

ra
ti

o
n

0

2

4

6

8

0.0

2.5

5.0

7.5

10.0

0

100

200

300

M
ea

n
#

of
S

et
s

R
ea

d

0

200

400

0

100

200

250 500 750

Query Size

0

50

100

150

200

M
ea

n
F

o
ot

p
ri

n
t

(K
B

)

2500 5000 7500

Query Size

0

200

400

600

25000
50000

75000

Query Size

0

500

1000

1500

LSHEnsemble-60 LSHEnsemble-90 JOSIE-D

Figure 3.10: The standard deviation, number of sets read and query memory footprint on Open Data
benchmark for k = 10.

is because the transformation from containment similarity (i.e., normalized intersection size |Q∩X||Q|) to

Jaccard similarity used by LSH Ensemble introduces additional false positive candidates [74], which

causes wasted time spent in reading those sets. We found that this influx of false positive candidates

is the most severe at small queries, due to the skewed set size distribution where there are many more

small sets than large sets. A sudden drop in the number of candidates can be observed in the second

row of Figure 3.10, the plot for the 10k benchmark. Unlike JOSIE-D, LSH Ensemble cannot use position

filter to prune out false positive candidates, it must read all candidates it encounters. As shown in the

10k and 100k benchmarks of Figure 3.10, the number of candidates read by LSH Ensemble drops closer

to that of JOSIE-D, while its running time becomes relatively faster than the latter. This is because LSH

Ensemble does not need to read any posting lists, and the candidate retrieval time is purely in-memory

and extremely fast, while JOSIE-D must issue read operations for posting lists to retrieve candidates.

The third row of Figure 3.10 compares the query memory footprint of LSH Ensemble and JOSIE-D.

Because JOSIE-D needs to read posting lists in addition to sets, it is expected to use more memory than

LSH Ensemble.

In conclusion, LSH Ensemble can be a better choice if the user wants to retrieve many results (k ≥ 20)

and the query size is large (more than 10k) and most importantly, if the user does not care very much

about recall of the results. Otherwise, a cost-based exact algorithm such as JOSIE-D is the better choice.

3.5.8 Measuring Query Memory Footprint

Measuring memory footprint based on heap usage has to deal with noise such as overhead in programming

language runtime, garbage collection, and various compiler optimizations. Thus, we only measure the

Chapter 3. JOSIE: Exact Top-K Joinable Table Search 60

amount of data structure allocated for the purpose of processing the query. In this section, we explain

our approach to measure the query memory footprint of the algorithms in Section 3.5.4.

We use Equation 3.16 to calculate the memory footprint of MergeList-D. The first term is the size of

a hash map for tracking the counts of times the candidates appear in posting lists. Its size is calculated

using the number distinct sets encountered (|WML|), times the size of each set ID and count. The second

term is the size of the buffer that is allocated to read posting lists. We use the longest posting list read

to calculate the size. Since MergeList-D only needs the set IDs in each posting list, and does not need

the token positions and set sizes, the buffer size is simply the total size of integer set IDs in the longest

posting list.

|WML| · 2 · SizeOf(Int) + max
i∈[1,|Q|]

fi · SizeOf(Int) (3.16)

We use Equation 3.17 to calculate the memory footprint of ProbeSet-D. The first term is the size of

the buffer allocated for reading posting lists. Due to the use of prefix filter (subset of posting lists from

1 to p∗), the buffer size is the size of the longest posting list in the prefix. However, since ProbeSet-D

needs the token positions and set sizes for position filter, in addition to set IDs, the size of each posting

list entry is 3 integers. The second term is the size of the buffer allocated for reading sets. Similar to

the other buffer, its size is calculated using the maximum size read. The third term is the size of the

hash set allocated for tracking sets that have been pruned or read, so it is simply the size of the IDs of

all the sets that appeared in the prefix posting lists. The set of all sets that appear in the prefix is W .

max
i∈[1,p∗]

3fi · SizeOf(Int) + max
X∈W\V

|X[jX,0 :]|

+|W | · SizeOf(Int)

(3.17)

Equation 3.18 is used to calculate the memory footprint for JOSIE-D, where δ is the extra posting

lists read after the prefix filter, V ∗ is the set of pruned candidates using the position filter, and Wi is

the set of candidates after reading posting list i. See Equation 3.14 and 3.7 for their usages in running

time analysis. The first three terms have nearly indentical expression as those of ProbeSet-D, however

the magnitudes can be different, as p∗ + δ ≥ p∗, and W \ V ∗ ⊆ W \ V . The last term is the maximum

size of the hash map allocated for unread candidates (Wi) after reading a batch of posting lists that end

at i. As described in Section 3.3.2, in addition to the set ID, we keep track of 4 additional integers for

each candidate. Also, since pruned candidates are removed from the hash map, we use the maximum

count of candidate sets during query processing to calculate the allocated size, as the deleted slots can

be reused.

max
i∈[1,p∗+δ]

3fi · SizeOf(Int) + max
X∈W\V ∗

|X[jX,0 :]|

+|W | · SizeOf(Int) + max
i∈[1,p∗+δ]

5|Wi| · SizeOf(Int)
(3.18)

For the LSH Ensemble algorithms, LSHEnsemble-60 and LSHEnsemble-90, we use Equation 3.19.

The first term is the size of the buffer allocated for reading sets, which is the maximum size over all sets

read. The second term is the size of the hash set allocated for tracking the candidates retrieved from

Chapter 3. JOSIE: Exact Top-K Joinable Table Search 61

the LSH indexes.

max
X∈WLSH

|X|+ |WLSH | · SizeOf(Int) (3.19)

During the experiments, we record all the relevant variables needed to calculate the memory footprint.

The experimental results on Open Data and Web Table benchmarks are shown in Figure 3.6, 3.8, and

3.10.

3.6 Related Work

The overlap set similarity search problem is a type of set similarity search where the similarity measure

is set intersection size. A very similar problem is set similarity join, which is also know as all-pair set

similarity search. Given a collection of sets, set similarity join finds all the set pairs whose similarity

is less than a threshold. There are many works on in-memory set similarity join. Mann et al. [46]

present an excellent experimental study. Specifically, Arasu et al. [1] designed a filtering condition with

guaranteed false positive rate while not missing any result. Bayardo et al. [5] proposed to use prefix

filter for set similarity join. Xiao et al. [70] extended the work by Bayardo et al. [5] with two additional

filters: the position filter, which we have discussed extensively in Section 3.2.3, and the suffix filter. We

do not use the suffix filter given the later Mann et al. study showed it was not very effective (something

we confirmed in our initial development of JOSIE). Instead of using a fixed-length prefix as done by

Bayardo et al., Wang et al. [65] designed an adaptive prefix filter framework. Wang et al. [67] further

improved Xiao et al.’s work through sharing computation cost among candidate sets.

A lot of research on parallel set similarity join has been done [56, 64, 23, 57, 61, 49]. Fier et al. [28]

present a recent experimental study of this work. Vernica et al. [64] designed a parallel algorithm

based on the prefix filter. MassJoin [23] uses partition-based string similarity join [43]. ClusterJoin [57]

partitions the sets and distributes the partitions to different nodes. The goal of these parallel approaches

is to scale in the number of sets, not necessarily in the size of the sets. For example, in the comparative

study of Fier et al., the maximum dictionary size is 8M.

In addition to threshold-based set similarity join algorithms, Xiao et al. [69] proposed an in-memory

algorithm for top-k set similarity join with Jaccard/Cosine similarity measures. We have introduced the

search version of this algorithm in Section 3.2.2. Deng et al. [22] and Wang et al. [66] studied the top-k

string similarity search problem. Behm et al. [6] studied the string similarity search problem in external

memory. Note that all these techniques are not designed for data lakes. They are typically evaluated on

sets with small average size and small dictionaries.

There is also research on finding related (not necessarily joinable) tables in data lakes. Sarma et

al. [58] use keyword search and similarity measures other than intersection size to find tables that are

candidates for join and candidates for union from Web Tables [11]. The Mannheim Search Engine

applies keyword search techniques to find joinable attributes by treating attribute values as keywords

and ranking candidate attributes using a fuzzy Jaccard similarity [41]. This work is not intended to

scale to large sets. Lehmberg et al. [39] found that stitching small web tables can help match them with

knowledge bases. Nargesian et al. [51] proposed techniques to search for unionable tables from data

lakes. Deng et al. [21] designed a set relatedness metric which can be used to find related tables.

Approximate set similarity search techniques have been used for finding related tables. Both Asym-

Chapter 3. JOSIE: Exact Top-K Joinable Table Search 62

metric Minwise Hashing [60] and LSH Ensemble [74] use MinHash-based indexing for set containment

search. LSH Ensemble was shown to handle data sets with skewed cardinality distribution much better

than Asymmetric Minwise Hashing, hence we have used LSH Ensemble in our experimental study in

Section 3.5. Fernandez et al. [26] use MinHash LSH to find similar tables based on Jaccard similarity

between columns. For the skewed distributions we consider, Jaccard is not an appropriate measure as

we showed in Chapter 2.

3.7 Summary

We have presented JOSIE, a new exact top-k overlap set similarity search algorithm. Unlike previous

approaches, JOSIE uses a cost model to adapt to the data distribution enabling significantly better

performance over data lakes with large sets than the state-of-the-art approach ProbeSet. For queries

with sizes up to 10K (a larger size than has been studied in the exact set similarity search literature),

JOSIE even out-performs what is currently the best approximate approach, our own LSH Ensemble from

Chapter 2. Our extensive experimental evaluation is the first to compare overlap set similarity search

approaches over a repository with sets of average size over 1K and maximum size in the millions (two

orders of magnitude larger than previous evaluations).

During the search, our approach estimates the likely intersection size between a candidate and the

query. Going forward, we are considering how to improve the estimation of set intersection size in a way

that takes into account the frequency of tokens. We believe this would lead to better estimation of the

net cost and make our cost model more accurate.

Our work and our competitors for both exact and approximate search all use set intersection size to

rank results. Of course, when searching relational tables, attributes may be bags. An open problem is to

use bag semantics (including the multiplicities of tokens within a set) to rank results. This would allow

a data scientist to be more informed about the relative usefulness of search results because it would

reflect the actual size of the joined tables.

Chapter 4

Auto-Join: Smart Join with

Transformations

In this chapter, we present Auto-Join, a powerful algorithm that automates joins with syntactic transfor-

mations. Tables in data lakes come from many different sources, which may have very different format

conventions. The formatting difference makes it difficult to join tables from different sources. Auto-

Join replaces the ad hoc manual script writing for making the format on the join columns consistent,

with an automated process, making data scientists more efficient in using data lakes. This technique

leverages substring indexes to efficiently identify joinable row pairs, from which it automatically learns

minimum-complexity programs whose execution can lead to equi-joins. Auto-Join also scales to large

tables while still maintaining interactive speed, using a sampling scheme that minimizes the number of

rows sampled, which has a formal guarantee of success with high probability. This algorithm and the

experimental evaluation presented in this chapter is published work [72].

4.1 Equi-Join Is Not Enough

In Section 1.2, we have introduced the usefulness of the join operation for tables in data lakes, and

established that join is essential to data analysis involving multiple tables. Many existing data analysis

tools such as Power Query for Excel1 and Informatica2 support join operation.

Most existing commercial systems only support equi-join through exact equality comparisons. While

equi-join works well in well-curated settings such as data warehousing, it may not be sufficient in less

curated situations, such as in the case of data lakes. For example, analysts today increasingly need to

perform one-off, ad hoc analyses by joining tables from different original sources, whose key columns are

often formatted differently. Requiring support staff to perform extensive ETL (extract-transform-load)

operations in such scenarios is often too slow and expensive. In fact, customer surveys from a Microsoft

data preparation system suggest that automating join is a key feature requested by end-users. Thus,

solving the auto-join problem would be an important step towards making data lakes easier to manage.

Figure 4.1 shows an example. An analyst has a table on the left in her spreadsheets about US

presidents and popular votes they won in elections, and a table on the right, that has information

1https://support.office.com/en-us/article/merge-queries-power-query-fd157620-5470-4c0f-b132-7ca2616d17f9
2https://www.informatica.com

63

https://support.office.com/en-us/article/merge-queries-power-query-fd157620-5470-4c0f-b132-7ca2616d17f9
https://www.informatica.com

Chapter 4. Auto-Join: Smart Join with Transformations 64

Figure 4.1: An example of joinable tables with different formats on the key columns. (left): US presidents
and popular votes. (right): US presidents and job approval rating. The right table uses last-name,
comma, first-name, with (year-of-birth and year-of-death).

about their job approval rating. Now she wants to join these two tables so that she can correlate them.

However, the name columns of the two tables use different representations – the one on the left uses

first-name followed by last-name, while the one on the right uses last-name, comma, first-name, with

additional year-of-birth information in parenthesis. To date, the popular data analysis software such

as Power Query for Excel3 and Informatica4 only support equi-join and would fail to work on these

two tables. The analyst would have to either write her own transformation program so that the name

representations become consistent for equi-join5, or ask technology support staffs to perform such a

transformation.

Figure 4.2: Another example of tables with different key column formats. (left): Name and job titles in
school. (right): Email and school districts. Email can be generated from name in the left by concatenating
first-initials, last-names, and @forsynth.k12.ga.us.

Figure 4.2 shows another case with two real tables collected from the web, where the table on the

left uses teachers’ full names, while the table on the right only has email addresses as the key column.

Note that in this case because email aliases can be generated by taking first-initials and concatenating

with last names, there exists a clear join relationship between the two tables. Equi-join, however, would

again fail to work in this case.

Scenarios like these are increasingly common in ad-hoc data analysis, especially when analysts need

to bring in data from different sources, such as tables extracted from public web pages.

It is worth noting that this join problem exists also in enterprise tables such as Excel files. Figure 4.3

shows a pair of real spreadsheet tables from a corpus of Excel files crawled in a large IT company. The

ATU (area-team-unit) column on the left can be joined with Sub-ATU on the right by taking the first two

components of Sub-ATU, and then equi-join with ATU in a hierarchical N:1 manner. Figure 4.4 shows

another example from enterprise spreadsheets. The two tables cannot be equi-joined directly. However,

if we concatenate id and session name in the left table with appropriate brackets, the two tables can

then be equi-joined.

3https://support.office.com/en-us/article/merge-queries-power-query-fd157620-5470-4c0f-b132-7ca2616d17f9
4https://www.informatica.com
5Such behavior is observed in customer surveys and logs – for certain datasets users perform sequences of transforma-

tions in order to enable equi-join.

https://support.office.com/en-us/article/merge-queries-power-query-fd157620-5470-4c0f-b132-7ca2616d17f9
https://www.informatica.com

Chapter 4. Auto-Join: Smart Join with Transformations 65

Figure 4.3: An example of tables from enterprise spreadsheets. (left): ATU name (for area team unit).
(right): Sub-ATU names organized under ATU.

Figure 4.4: Another example of tables from enterprise spreadsheets. (left): ID and session name in
separate fields. (right): Concatenated full session name.

Joining tables with different representations is a ubiquitous problem. Simple syntactic transforma-

tions (e.g., substring, split, concatenation) can often be applied to make equi-join possible. However,

existing commercial systems can only perform equi-joins, and users often face two main challenges. (1)

For big tables with a large number of rows and columns, manually identifying corresponding rows and

columns from two tables that can join using transformations is non-trivial (i.e., manually searching sub-

strings in large spreadsheets is slow and does not always produce hits). (2) End-users (e.g., Excel users)

may not be able to program transformations to enable equi-join. In this chapter, our goal is to automate

the discovery of syntactic transformations needed such that two tables with different representations can

be joined with the click of a button. Note that because such transformations are driven by end-user

tools, a significant technical challenge is to make such transformation-based join very efficient and at

interactive speed.

4.2 Related Work

A straightforward approach is to ask users to provide transformation programs (either manually or with

the help of example-driven tools like FlashFill [32] and Foofah [37]). These programs can then be used

to produce derived columns, with which tables can be equi-joined. This is inconvenient for users – for

large tables with many columns and millions of rows, the first task of identifying rows and columns from

two tables with joinable values alone is non-trivial, as users often have to pick random sub-strings from

one table to search for hits in the other, which is slow and often fails to produce matches. The need

to find the “best” transformation in the context of joins further complicates the problem. We aim to

automate this process so that users can join two unordered sets of rows with the click of a button – in

comparison, we no longer require users to manually specify matching pairs of input/output examples as

in FlashFill-like systems [32].

Since rows that join under syntactic transformations typically have substantial substring overlap,

an alternative approach is to use fuzzy join [13]. The challenge is that fuzzy join has a wide range of

parameters (tokenization, distance-function, thresholds, etc.) that need to be configured appropriately

Chapter 4. Auto-Join: Smart Join with Transformations 66

to work well. For example, fuzzy join can be configured to tokenize differently (tokenize by words, or

by 2-gram, 3-gram, etc.), use different distance functions (Jaccard, Cosine, etc.), and different distance

thresholds. The ideal configuration can vary significantly from case to case, and is difficult for users to

determine. For instance, for Figure 4.1, one should tokenize by words, but that tokenization will fail

completely for Figure 4.2, which requires q-gram tokenization.

Furthermore, even when fuzzy join is configured perfectly, it may still produce incorrect results due

to its fuzzy and imprecise nature. For example, in Figure 4.1, if we tokenize by words, and want to join

Ronald Reagan and Reagan, Ronald(1911-2004), then the threshold for Jaccard distance should be

at least 0.66 (this pair has a distance of 1.0 − 1
3 = 0.66). However, using a threshold of 0.66 will also

join George W. Bush with Bush, George H. W.(1924-) (where the distance is 1.0 − 3
5 = 0.4), which

is incorrect. 6 The root cause here is that fuzzy join uses an imprecise representation and a simple

threshold-based decision-boundary that is in practice, not always correct. On the other hand, there are

many cases where regularity of structures in data values exists (e.g. Figure 4.1-4.4), and for those cases

using consistent transformations for equi-join complements fuzzy-join by overcoming its shortcomings

mentioned above.

Warren and Tompa [68] proposed a technique to translate schemas between database tables, which

is applicable to joins and is the only published technique that we are aware of that can produce

transformation-based joins given two tables. However, the types of transformations they considered

are rather limited (e.g., no string-split and component based indexing), and as a result their approach is

not expressive enough to handle many real join tasks we encountered. As we will show in our experiments,

their approach can handle less than 30% of the join cases we collected.

4.3 Problem Overview

Our objective is to automate transformation-joins by generating the transformations that are needed

for equi-joins. Specifically, we want to transform columns of one table via a sequence of string-based

syntactic operations, such that the derived columns can be equi-joined with another table. Example 4.3.1

gives such an example.

Example 4.3.1. In Figure 4.1, there exists a transformation whose application on the right table can

lead to equi-joining with the left table. We illustrate the sequence of operations in the transformation

using the first row
{[
Obama, Barack(1961-)

]
,
[
47.0

]}
as an example.

1. Input row X with two elements:{[
Obama, Barack(1961-)

]
,
[
47.0

]}
2. Take the first item X[0], Split by “(”, produce Y :{[

Obama, Barack
]
,
[
1961-)

]}
3. Take the first item Y [0], Split by “,”, produce Z:

{
[
Obama

]
,
[
Barack

]
}

4. Takes Substring [1:] from Z[1], produce T :[
Barack

]
5. Concat T , a constant string “ ” and Z[0], produce[

Barack Obama
]

6Notice that unlike in previous chapters, the literature in this area uses distance rather than similarity. Hence, we will
require the distance to be less than a threshold rather than the similarity being over a threshold as before.

Chapter 4. Auto-Join: Smart Join with Transformations 67

Table 4.1: Notations for analyzing q-gram matches.

Symbol Description

Ts, Tt Ts is the source table, Tt is the target table.

Rs, Rt A row in Ts and Tt, respectively

Cs, Ct A column in Ts and Tt, respectively

Qq(v) The q-grams of a string value v

Qq(Cs) The multi-set of all q-grams in Cs

Qq(Ct) The multi-set of all q-grams in Ct

This derived value can then be equi-joined with the first row in the left table in Figure 4.1. It can be

verified that the same transformation can also be applied on other rows in the right table to equi-join

with the President column of the left table.

As discussed earlier, identifying joinable rows from large tables alone is non-trivial, not to mention

programming transformations. We would like to automate this problem, which we call the transformation

join problem.

Definition 4.3.1. Transformation Join Problem: Given two tables Ts, Tt, and a predefined set of

operators Ω, find a transformation P = o1 · o2 · o3 · . . . on, using operators oi ∈ Ω, such that P (Ts) can

equi-join with key columns of Tt.

Here each transformation P is composed of a sequence of operators in Ω, where the output of one

operator is the input of the next. For the purpose of transformation-join, we have identified a small set

of operators that are sufficient for almost all join scenarios we encountered.

Ω = {Split, Concat, Substring, Constant, SelectK} (4.1)

This set of operators Ω can be expanded to handle additional requirements as needed.

In this definition, because we require P (Ts) to equi-join with key columns of Tt, the types of join

we consider are implicitly constrained to be 1:1 join (key:key) and N:1 join (foreign-key:key). This

constraint is important because it ensures that the joins we automatically generate are likely to be

useful; relaxing this constraint often leads to N:M joins that are false positives (e.g., join by taking three

random characters from two columns of values).

Also observe that we apply transformations on one table Ts in order to equi-join with another table

Tt. We refer to the table Ts as the source table, and Tt as the target table, respectively.

Because in our problem, we are only given two tables with no prior knowledge of which table is the

source and which is the target, we try to generate transformations in both directions. In Example 4.3.1

for instance, the right table is used as the source table. Changing direction in this case does not

generate a transformation-join because year-of-birth is not present in the left table. Advanced handling

of composite columns will be discussed in Section 4.4.3.

Solution Overview Our system has three main steps.

Chapter 4. Auto-Join: Smart Join with Transformations 68

Step 1: Find Joinable Row Pairs. In our problem, we only take two tables as input, without

knowing which row from Ts should join with which row from Tt. Generating transformations without

such knowledge would be exceedingly slow, due to the quadratic combinations of rows in two tables that

can potentially join.

So in the first stage, we attempt to “guess” the pairs of rows from the two tables that can potentially

join. We leverage the observation that unique q-grams are indicative of possible join relationships (e.g.

Obama), and develop an efficient search algorithm for joinable row pairs.

Step 2: Learn Transformation. Once we obtain enough row pairs that can potentially join, we

learn a transformation that uses rows from Ts as input and generates output that can equi-join with

key columns of Tt. In Example 4.3.1 for instance, the desired transformation uses
{[
Obama, Barack

(1961-)
]
,
[
47.0

] }
as input, and produces

[
Barack Obama

]
as output to join with the key column of

the left table. Since there likely exists many possible transformations for one particular input/output

row pair, we use multiple examples to reduce the space of feasible transformations, and then pick the

one with minimum complexity that likely best generalizes the observed examples. This learning process

is repeated many times using different combinations of row pairs, and the transformation that joins the

largest fraction of rows in Tt is produced as the result.

Step 3: Constrained Fuzzy Join. In certain cases such as tables on the web, the input tables may

have inconsistent value representations or dirty values. For example, in Figure 4.2, the second row of

the right table uses mipayne@forsyth.k12.ga.us, instead of first-initial concatenated by last-name like

other rows (which would produce mpayne@forsyth.k12.ga.us). Thus, transformations may miss this

joinable row pair. As an additional step to improve recall, we develop a mechanism that automatically

finds a fuzzy-join with optimized configuration to maximize additional rows to join, without breaking

the join cardinality constraints (i.e., 1:1 or N:1). This improves the coverage of joins on dirty tables,

and is of independent interest for the important problem of automatically optimizing fuzzy join.

4.4 Auto-Join by Transformations

In this section, we discuss the first two steps of Auto-Join: (1) finding joinable row pairs, and (2) learning

transformations that generalize the examples observed in these row pairs.

4.4.1 Finding Joinable Row Pairs

Let P be the desired transformation, such that P (Ts) can equi-join with Tt as in Definition 4.3.1. Pairs

of rows that join under this transformation P is termed as joinable row pair. For instance, the first row

from the left and right table in Figure 4.1 is a joinable row pair.

Since users do not provide joinable row pair as input to our system (which is cumbersome to provide

especially in large tables), in this section we explain our approach for “guessing” joinable row pairs

candidates from the two table through unique q-grams matches. Note that finding such row pairs is

important, because trying the quadratic number of row combinations exhaustively is too computationally

expensive to be interactive.

We leverage the observation that the set of operations Ω considered for transformation-join (Equa-

tion 4.1) tend to preserve local q-gram. A q-gram [10] of a string v is a substring of v with q consecutive

characters. A complete q-gram tokenization of v, denoted as Qq(v), is the set of all possible q-grams of

Chapter 4. Auto-Join: Smart Join with Transformations 69

v. For example:

Q5(Database) = {Datab, ataba, tabas, abase}

q-grams have been widely used for string similarity and language modeling, among other applications.

Operations required for transformation-joins in Ω all tend to preserve sequences of local q-grams,

which is the key property we exploit to find joinable row pairs.

1-to-1 q-Gram Match

Intuitively, if we can find a unique q-gram that only occurs once in Ts and Tt, then this pair of rows is

very likely to be a joinable row pair (e.g., q-gram Barack in Figure 4.1). We start by discussing such

1-to-1 matches, and show why they are likely joinable row pairs using a probabilistic argument.

It is known that q-grams in texts generally follows power-law model [7, 29].

pq(k) =
1
ksq∑N
z=1

1
zsq

(4.2)

Here k is the rank of a q-gram by frequency, N is the total number of q-grams, and sq is a constant for

a given q.

We have conducted experiments that count q-gram occurrences from over 100M Web tables extracted

from a 2018 snapshot of the documents indexed by the Bing search engine (called Bing Web Tables to

distinguish them from the WDC corpus used in previous chapters). We did the same for all tables in

Wiki tables. We test whether q-grams and natural words in the large table corpus also follow power

laws by plotting a rank vs. frequency graph as shown in Figure 4.5. Note that both axes of the plots are

in log scale. The close-to-linear relationships observed on these plots (especially for words and q-grams

with larger q) suggest that this is indeed the case.

Given a pair of tables whose q-grams are randomly drawn from such a power-law distribution, we

can show that it is extremely unlikely that a q-gram appears exactly once in both tables by chance (for

reasonably large tables, e.g., N > 100).

Proposition 4.4.1. Given two columns Cs and Ct from tables Ts and Tt respectively, each with N

q-grams from an alphabet of size |Σ| that follow the power-law distribution above. The probability that a

q-gram appears exactly once in both Cs and Ct by chance is bounded from above by

|Σ|q∑
k=1

(
(1− pq(k))N−1 · pq(k)

)2
(4.3)

Proof. Given Equation 4.2, the probability that a q-gram with rank k appears exactly once in a random

collection of N q-grams follows a geometric distribution:

(1− pq(k))N−1 · pq(k)

The probability of this q-gram appears exactly once each in two independent collections with N q-grams

is then: (
(1− pq(k))N−1 · pq(k)

)2
Lastly, the probability that at least one q-gram appears exactly once each in two collections can be

Chapter 4. Auto-Join: Smart Join with Transformations 70

100 101 102 103 104 105 106

Rank

102

103

104

105

106

107

108

F
re

q
u

en
cy

Wiki Tables

Web Tables

(a) Tokenization by 3-grams

101 103 105 107

Rank

102

103

104

105

106

107

108

F
re

q
u

en
cy

Wiki Tables

Web Tables

(b) Tokenization by 4-grams

101 103 105 107

Rank

102

103

104

105

106

107

108

F
re

q
u

en
cy

Wiki Tables

Web Tables

(c) Tokenization by 5-grams

100 101 102 103 104 105 106

Rank

102

103

104

105

106

107

108

F
re

q
u

en
cy

Wiki Tables

Web Tables

(d) Tokenization by words

Figure 4.5: Frequency vs. rank in log-log plots. Close-to-linear relationships in the plots show that
q-grams in Bing Web tables and Wikipedia tables also follow power laws, similar to what people have
observed in general natural language text [7, 29].

computed using a summation over all possible |Σ|q q-grams:

|Σ|q∑
k=1

(
(1− pq(k))N−1 · pq(k)

)2

For q = 6, N = 100, |Σ| = 52, and using the sq defined in [7], the probability of any 6-gram

appearing exactly once by chance on both columns is very small (< 0.00017). This quantity will in fact

grow exponentially small for larger N (typical tables have at least thousands q-grams).

Given this result, we can conclude that if we do encounter unique 1-to-1 q-gram matches from two

tables, they are unlikely coincidence but the result of certain relationships.

Let Qq(C) be the multi-set of all the q-grams of distinct values 7 in column C; and let Fq(g, C) be

the number of occurrences of a q-gram g ∈ Qq(C). Let vs and vt be the cell value at row Rs column Cs

in Ts and row Rt column Ct in Tt, respectively. We define 1-to-1 q-gram matches as follows.

Definition 4.4.1. Let g be a q-gram with g ∈ Qq(vs) and g ∈ Qq(vt). If Fq(g, Cs) = 1 and Fq(g, Ct) = 1,

7We remove possible duplicates in Ts columns since they are potentially foreign keys.

Chapter 4. Auto-Join: Smart Join with Transformations 71

then g is a 1-to-1 q-gram match between row pair Rs and Rt with respect to the pair of column Cs and

Ct.

As we have discussed, matches that are 1-to-1 q-gram are likely joinable row pairs.

Example 4.4.1. Given two tables in Figure 4.1, the 6-gram Barack appears only once in both tables,

and the corresponding rows in these two tables are indeed a joinable row pair. The same is true for

q-grams like chowdury in Figure 4.2, France.01 in Figure 4.3 and UBAX01 in Figure 4.4, etc.

As the reader will see in the experimental results (Section 4.7.3), using 1-to-1 q-gram matches as

joining row pairs leads to a precision of 95.6% in a real-world benchmark.

General n-to-m q-Gram Match

Q-gram matches that are 1-to-1 are desirable special cases. In general we have n-to-m q-gram matches.

Definition 4.4.2. Let g be a q-gram with F (g, Cs) = n ≥ 1 and F (g, Ct) = m ≥ 1, then g is a n-to-m

q-gram match for corresponding rows with respect to the pair of column Cs and Ct.

Compared to 1-to-1 q-gram matches that almost always identify a joinable row pair, the probability

that a row pair identified by n-to-m matches is truly joinable is roughly 1
nm . We use 1

nm to quantify the

“goodness” of matches.

Note that the ideal q to identify n-to-m matches with small n and m can vary significantly in different

cases.

Example 4.4.2. For the tables in Figure 4.1, if we use 6-grams for value Barack Obama, we get an

ideal 1-to-1 match of Barack between the first rows of these two tables. However, if we also use 6-gram

for the second row George W. Bush, then the best we could generate is a 2-to-2 match using the 6-gram

George, between the second and fourth rows of these two tables, respectively.

For George W. Bush, the ideal q should be 9, since the 9-gram George W. could produce a 1-to-1

match. However, if we use 9-grams for the first row Barack Obama, we would fail to generate any q-gram

match.

The ideal q is not known a priori and needs to be searched.

Efficient Search of q-Gram Matches

A simple algorithm for finding ideal q-gram matches (with small n and m) would conceptually operate

as follows: (1) for every cell from one table, (2) for all possible settings of q, (3) for each q-gram in

the resulting tokenization, (4) iterate through all values in the this table to find the number of q-gram

matches, denoted as n; (5) iterate through all values in the other table to find the number of q-gram

matches, denoted as m. The resulting match can be declared as an n-to-m match. This is clearly

inefficient and would fail to make the desired join interactive. In this section we describe efficient

techniques we use to search for unique q-gram matches.

First, we build a suffix array index [45] for every column in the source table and each column of the

target table, so that instead of using step (4) and (5) above, we can search with logarithmic complexity.

A suffix array index is built by creating a sorted array of the suffixes of all values in a column. Given

a query q-gram, matches can be found by using binary search over the sorted array and looking for

prefixes of the suffixes that match the query exactly. The complexity of probing a q-gram in the index is

Chapter 4. Auto-Join: Smart Join with Transformations 72

O(logS), where S is the number of unique suffixes. We probe each q-gram once in both tables, to find

the number of matches n and m.

Using suffix array significantly improves search efficiency for a given q-gram. However, for a cell

value v, we still need to test all possible q-grams. To efficiently find the best q-gram (with the highest
1
nm score), we express the optimal q-gram g∗ as the best prefix of all possible suffixes of v.

g∗ = arg max
∀g∈Prefixes(u),u∈Suffixes(v)

1

nm
(4.4)

Where n = F (g, Cs) > 0 and m = F (g, Ct) > 0 are the number of matches in column Cs and Ct,

respectively. We leverage a monotonicity property described below.

Proposition 4.4.2. Let gqu be a prefix of a suffix u with length q. As the length increases by 1 and

gqu extends at the end, the 1
nm score of the longer prefix gq+1

u is monotonically non-increasing, or

F (gq+1
u , Cs) ≤ F (gqu, Cs) and F (gq+1

u , Ct) ≤ F (gqu, Ct).

Proof. Let a gqu = x1x2 . . . xq be a prefix with length q, and S = s1s2 . . . sn be a string of length n, where

x1, x2, . . . and s1, s2, . . . are characters. Let S[i : j] be a slice of S from si to sj , where 1 ≤ i < j ≤ n. If

S[i : j] = gqu, then S[i : j − 1] = gqu[1 : q − 1]. Thus, if gqu has one match with S, then gqu[1 : q − 1] must

have at least one match with S. Reversely, if S[i : j − 1] = gqu[1 : q − 1] but sj 6= aq, then S[i : j] 6= gqu.

Thus, if gqu[1 : q− 1] has a match with S, then gqu may not have a match with S. Therefore, the number

of matches for a prefix gqu with a string S monotonically decreases as q increases.

Given Proposition 4.4.2, for every suffix u we can find gq
∗

u by looking for the longest prefix with

matches in Ct using binary search. The global optimal g∗ can be found by taking the gq
∗

u with the

highest score for all u. In practice, we found that when q < 3, the number of q-gram matches can be

very large, severely impacting performance. Thus, we force q and the minimum length of suffixes to be

at least 3.

Example 4.4.3. In Figure 4.1, for the value George W. Bush, we iterate through all its suffixes (e.g.,

“George W. Bush”, “eorge W. Bush”, etc.). For each suffix, we test their prefixes using binary search

to find the one with the best score (the longest prefix with match), from which we select the best prefix.

In this case the prefix “George W.” for the first suffix is the best g∗.

With this 1-to-1 match, we can determine that the first rows from the left/right tables in Figure 4.1

are joinable row pairs. Similarly the second rows from the two tables are also joinable row pairs, etc.

Because of the use of suffix array indexes and binary search, our overall search complexity is

O(|v| log |v| logS), which is orders of magnitude more efficient than the simple method discussed at

the beginning of this section.

Putting it together: Find Joinable Rows

Algorithm 3 shows detailed pseudo code for finding joinable row pairs. KeyColumns(T) returns all

the single columns that is part of a key column in the table T . Suffixes(v) returns all suffixes of a

value v. QueryIndex(C, g) uses a suffix array index built for the column C, and returns a list of rows

containing g. The suffix array index can cache query results to efficiently serve queries that have been

Chapter 4. Auto-Join: Smart Join with Transformations 73

seen queried. MaxByScore returns the optimal row pairs with the highest score. Note that more than

one row pairs may have the same highest score.

In Section 4.4.1, we state that the optimal prefix gq
∗

u for a suffix u is the one that has the highest
1
nm score. Here we present our algorithm for finding gq

∗

u . First, due to the monotonicity property given

by Proposition 4.4.2, the value q∗ that leads to the highest score should results in the smallest possible

non-zero number of matches in Ct. That is, let rt be the matching rows in Ct returned by QueryIndex,

calling QueryIndex(Ct, g
q∗

u) results in |rt| ≥ 1, while calling QueryIndex(Ct, g
q∗+1
u) results in |rt| = 0.

The source column Cs is not needed in finding gq
∗

u . This is because (1) there is always a match in the

source column (i.e., the current row itself) so n = |rs| > 0 always, and (2) when m = |rt| = 0, the score
1
nm becomes undefined and thus the corresponding q is infeasible. Therefore, q∗ is only obtained at the

conditions mentioned above, and is not dependent on Cs. BinarySearchQ(u,C) performs the binary

search of q∗ that finds gq
∗

u in C.

In practice, we found that when q < 3, the number of q-gram matches can be very large, severely

impacting performance. Thus, we force q and the minimum length of suffixes to be at least 3.

It is worth noting that we group row pairs by the column pairs from which the matches are found.

This is because we want to produce consistent transformations on certain columns Cs in Ts, so that the

results can equi-join with columns Ct in Tt. As such, matches found in different column pairs are good

indications that they belong to different transformation-join relationships, as illustrated by the following

example.

Example 4.4.4. In Figure 4.2, in addition to q-gram matches between the columns Name and Email,

there is a q-gram match for Princ, which matches Principal in the first row in the Title column from

the left table, and Princeville in the last row in the School column from the right table. However,

matching row pairs produced between Title and School can be used to produce a transformation-join

relationship between these columns (if one exists), which should be treated separately from one produced

using matches between the Name and Email columns.

Chapter 4. Auto-Join: Smart Join with Transformations 74

Algorithm 3 Complete pseudo code for joinable row pair

1: function FindJoinableRowPairs(Ts, Tt)
2: M ← {} . q-gram matches
3: for all Cs ∈ Ts do
4: for all Ct ∈ KeyColumns(Tt) do
5: for all v ∈ Cs do
6: m← {}
7: for all u ∈ Suffixes(v) do
8: q∗ ← BinarySearchQ(u,Ct)
9: if q∗ < 3 or q∗ > Length(u) then

10: continue
11: end if
12: gq

∗

u ← u[1 : q∗]
13: rs ← QueryIndex(Cs, g

q∗

u)
14: rt ← QueryIndex(Ct, g

q∗

u)
15: for all (Rs, Rt) ∈ Pairs(rs, rt) do
16: m← ∪{(gq∗u , Rs, Rt, 1

|rs||rt|)}
17: end for
18: end for
19: (g∗, R∗s , R

∗
t , score) · · · ←MaxByScore(m)

20: M ← ∪{(g∗, (R∗s , R∗t), (Cs, Ct), score) . . . }
21: end for
22: end for
23: end for
24: return SortByScore(M),GroupBy((Cs, Ct))
25: end function
26: function BinarySearchQ(u,Ct)
27: a← 3, b← Length(u) + 1
28: while a < b do
29: h← a+ (b− a)/2
30: rt ← QueryIndex(Ct, u[1 : h])
31: if |rt| > 0 then
32: a← h+ 1
33: else
34: b← h
35: end if
36: end while
37: return a− 1 . a is the smallest q for |rt| = 0
38: end function

Chapter 4. Auto-Join: Smart Join with Transformations 75

4.4.2 Transformation Learning

Given joinable row pairs {(Rs, Rt)} produced for some column pair Cs and Ct from the previous step,

we will now generate transformation programs using these pairs as examples. Specifically, we can view

row Rs from Ts as input to a transformation program, and Rt projected on some key columns K of

Tt as the desired output. If a transformation can take Rs as input and produce key columns K of Rt,

equi-join becomes possible.

Physical Operators

Recall that we generate transformations using the following set of physical operators,

Ω = {Split,SelectK,Concat,Substring,Constant}

The detailed interface of each operator is as follows.

• string[] Split(string v, string sep)

• string SelectK(string[] array, int k)

• string Concat(string u, string v)

• string Constant(string v)

• string Substring(string v, int start, int length, Casing c)

Each operator is quite self-explanatory. Split splits an input string using separator; SelectK selects

the k-th element from an array; Concat performs concatenation; Constant produces a constant string;

and finally Substring returns a substring from a starting index position (counting forward or backward)

for a fixed length, with appropriate casing (lower case, upper case, title case, etc.).

In designing the operator space for Auto-Join, we referred to the string transformation primitives

defined in the spec of the String class of C# and Java. The physical operators we use are a core subset

of the built-in String functions of these languages.

Disambiguate Transformations by Examples

While in Example 4.3.1 we illustrate transformations using one joinable row pair for simplicity, in practice

with only one row pair there often exists multiple plausible transformations.

Example 4.4.5. In Example 4.3.1 the input row X has two elements
{[
Obama, Barack(1961-)

]
,[

47.0
]}

, and the target output is
[
Barack Obama

]
. In addition to the transformation shown in that

example, an alternative transformations that can also produce this output is:

1. Take the first item X[0], Substr[8:6], produce
[
Barack

]
2. Concat with constant string “ ”, produce

[
Barack

]
3. Concat with X[0], Substr[0:5], to produce the target output

[
Barack Obama

]
There exists many candidate transformations given only one input/output example pair. However,

most of transformations would fail to generalize to other example pairs. The observation here is that if

we use multiple joinable row pairs as input/output examples, the space of possible transformations are

significantly constrained, such that the incorrect transformations will be pruned out. For example, if we

just add the second rows from Figure 4.1 as an example pair, with
{[
Bush, George W.(1946-)

]
,
[
49.4

]}

Chapter 4. Auto-Join: Smart Join with Transformations 76

as the input and
[
George W. Bush

]
as the output, then the transformation discussed in Example 4.4.5

would no longer be valid, as it would produce
[
eorge Bush,

]
, which cannot be joined with the keys in

the other row.

The pruning power grows exponentially with the number of examples (details of this analysis can be

found in Section 5.4 of the Appendix). In practice we just need a few examples (3 or 4) to constrain the

space of candidate programs enough and generate the desired transformations. Note that we choose to

use a small number of examples, because if we use hundreds of row pairs as examples, if even one row

pair is a false-positive and not actually joinable, no consistent transformation can be produced and the

the learning step would likely fail.

Learning via Logical Operators

The learning problem now is to find consistent transformations for a small set of input/output example

row pairs. While the execution of transformations can be decomposed into simple physical opera-

tors defined in Ω, these are too fine-grained and do not directly correspond to our logical view of the

transformation steps that humans would take. For instance, in Example 4.1 when we use
{[
Obama,

Barack(1961-)
]
,
[
47.0

]}
as input to produce

[
Barack Obama

]
as output, humans would naturally view

the required transformation as having three distinct logical steps – extract the component Barack, pro-

duce a space “ ”, extract the component Obama. Note that these logical operations correspond to a

higher-level view that can always translate into a combination of simple physical operators – extracting

the first of component implemented as Split by “(” followed by Split by “,”, and finally a Substring.

For the technical reason of learning programs from examples, by mimicking how humans rationalize

transformations, we introduce a set of higher-level logical operators Θ, each of which can be written as

a sequence of physical operators. Θ={Constant,Substr,SplitSubstr,SplitSplitSubstr}
Unlike physical operators, each logical operator always returns a string. Each logical operator can

be viewed as a “step” that contributes “progress” (partial output) to final results. It is important that

logical operators all return strings, so that during automatic program generation, at each step we can

decide which logical operator is more promising based on “progress”. In comparison, physical operators

like SelectK often need to be used in conjunction with other operators like SubStr before producing

partial output, thus not directly amenable to automatic program generation.

Here we give a specification of logical operators using physical operators.

string SplitSubstr(string[] array, int k, string sep, int m, int start, int length,

Casing c) := Substring(SelectK(Split(SelectK(array, k), sep), m), start, length, c)

string SplitSplitSubstr(string[] array, int k1, string sep1, int k2, string sep2,

int m, int start, int length, Casing c) := Substring(SelectK(Split(SelectK(Split(

SelectK(array, k1), sep1), k2), sep2), m), start, length, c)

string Constant(string input) := input

string Substring(string[] array, int m, int start, int length, Casing c) :=

Substring(array, m, start, length, c)

Note that Concat is a physical operator but not defined as a logical operator above. When programs

are generated by the learning procedure, Concat is used implicitly to compose multiple logical operators

in transformation programs through concatenation.

Using logical operators, we can define the transformation learning problem as follows.

Chapter 4. Auto-Join: Smart Join with Transformations 77

Definition 4.4.3. Transformation Learning: Given a set of joinable row pairs R = {(Ris, Rit)|i ∈
[m]} that can be viewed as input/output examples, and a predefined set of logical operations Θ, find a

transformation P = θ1 · θ2 · θ3 · . . . θn, θi ∈ Θ, such that

(1) P is consistent with all examples in R, namely, ∀i ∈ [m], P (Ris) can produce the projection of Rit on

some key columns K of Tt, denoted as ΠK(Rit);

(2) P has minimum-complexity, measured as the number of logical operators used, among all other

transformation programs that are consistent with examples in R.

This definition is in spirit consistent with principles such as Minimum Description Length [55] or

Occam’s razor [30] – if there are multiple candidate transformations that can explain all given examples,

we use the simplest one and that is likely correct. For instance, the transformation in Example 4.3.1

requires 3 logical operators, and there exist no other programs with lower complexity.

The learning problem can be viewed as a search problem – each logical operator produces a partial

output and has a unit cost. Like shortest path algorithms, we want to reach the goal state by producing

the required output strings but with the least cost.

This motivates a program learning algorithm that searches for the best program by recursively

expanding a partial transformation program using the logical operator that yields the most progress,

which is defined as the total number of consecutive characters in the output examples produced by the

partial transformation program.

Algorithm 4 Transformation learning by example.

Require: R = {Ii, Oi|i ∈ [k]} . Input/output row pairs

1: function TryLearnTransform(R = {Ii, Oi|i ∈ [k]})
2: while true do

3: θ ← FindNextBestLogicalOp(R)

4: P i ← ExecuteOperator(θ, Ii, Oi),∀i ∈ [k]

5: Oil = LeftRemainder(Oi, P i),∀i ∈ [k]

6: θl = TryLearnTransform({Ii, Oil |i ∈ [k]})
7: if θl = null then

8: continue

9: end if

10: Oir = RightRemainder(Oi, P i),∀i ∈ [k]

11: θr = TryLearnTransform({Ii, Oir|i ∈ [k]})
12: if θr = null then

13: continue

14: end if

15: θ.left child = θl

16: θ.right child = θr

17: return θ . current root node

18: end while

19: end function

This algorithm is outlined in Algorithm 4 and works as follows. For the given set of input/output

examples, it finds the best logical operator θ (using FindNextBestLogicalOp) that produces the

Chapter 4. Auto-Join: Smart Join with Transformations 78

most progress towards the required output strings (which in this case is some key column of the output

rows). The process of finding best logical operator involves iterating through all feasible parameters (e.g.,

split position, deliminator, select position etc.) given the input example. We execute the operator θ and

extract partial output produced from the target output. We get what remains to the left and right in the

target output, denoted as Oil and Oir, respectively. This produces two new instances of the problem with

{Ii, Oil |i ∈ [k]} and {Ii, Oir|i ∈ [k]}, which have the same structure as the original {Ii, Oi|i ∈ [k]}. So

we recurse and invoke TryLearnTransform on the two smaller problems. The resulting operators, θl

and θr, if learned successfully, are added as the left child and right child of θ, until all remaining target

output have been consumed. If at certain level in the hierarchy TryLearnTransform fails to find

a consistent transformation, we can backtrack by using the next best logical operator, or terminate if

enough number of candidates have been tested.

In practice we impose a limit τ on the number of logical operators that can be used in a program P

to bound the search space (e.g., τ = 16). We found τ = 10 to be sufficient to produce transformations

needed to join all real scenarios we encountered. Setting a larger τ however has little impact on efficiency,

because incorrect program generation paths are terminated quickly for failing to produce new operators

consistent with the set of output examples.

We use the following example to illustrate this procedure.

Example 4.4.6. From the example in Figure 4.1, suppose the first three rows from the right and left

tables are given as learning examples for input/output row pairs, respectively. To learn transformation,

suppose we use the first row
{[
Obama, Barack(1961-)

]
,
[
47.0

]}
as input and

[
Barack Obama

]
as out-

put, and we use the remaining two rows as validations. To generate the first logical operator for this row

pair, we search over operators in Θ with all possible parameters (separators for Split up to a certain

length, indexes for Substring that are valid for the given string, etc.), and pick the logical operator that

yields the most progress. In this case it can be verified that the operator with the most progress is Split-

SplitSubstr, which selects the first input element: [X = SelectK(input, 0)]; split by “(” and take

the first element: [Y = SelectK(Split(X, “(”), 0)]; split again by “ ” and take the second element:

[Z = SelectK(Split(Y, “ ”), 1)]; take substring from position 1 to the end [1:-1]: [Substr(Z, 1,

-1)]. This operator generates Barack for the first row, George W. for the second, Bill for the third,

with a total gain of 19 characters (6 + 9 + 4), and an average gain of 49% for the required outputs across

three rows (6
12 , 9

14 and 4
12 , respectively).

With this first operator, the remaining required output strings to be covered are {“ Obama”, “ Bush”,

“ Clinton” }. We again search for the logical operator that yields the most progress, for which we find

SplitSubstr that splits by “,”, takes the first element, and returns the full string. Now the remaining

output strings are {“ ”, “ ”, “ ” }, which can be covered by adding a Constant operator that produces

a space character. Finally, by concatenating these operators, we complete a candidate transformation

program that can be tested on the full input tables.

Through the following proposition, we show the success probability of transformation learning.

Proposition 4.4.3. The learning procedure succeeds with high probability, if the transformation can be

expressed using operators in Θ. The success probability is lower bounded by

1−

1−
∏
i∈[m]

(
1−

(
1 + (|SI |+ |SI |k)|SO|k

) 1

|Σ|
k|Si|

)T

Chapter 4. Auto-Join: Smart Join with Transformations 79

where k is the number of independent examples used, T is the number of trials (each with k examples),

|SI | and |SO| are the lengths of input/output examples, and |Si| is the length of the result of each

intermediate step (for a logical operator).

A proof of this result can be found in Section 5.4 of the Appendix. This proposition shows that

with T independent trials we can reduce the failure probability at a rate exponential in T , thus quickly

improving success probability as T increases.

Ranking of Candidate Transformations.

Recall in Section 4.4.1, we generate groups of joinable row pairs, based on q-gram matches between

each pair of columns Cs, Ct. For each such group, we select the top-k row pairs with the highest scores

(typically 1-to-1 matches), and apply transformation learning for a fixed number of times, each of which

on a random subset of the selected row pairs. We execute each learnt transformation on the original

input tables, and pick the one that joins the most number of rows in the target table. By the definition

of transformation join problem (Definition 4.3.1), the joining columns in the target table are key columns

(1:1 or N:1 joins). A key-column join with high row coverage is likely to be meaningful in practice.

Algorithm 5 provides an overview for the transformation learning step. The LearnTransform(M)

takes the q-gram matches M discovered in the previous step (Algorithm 3), which is grouped by the

comlumn pairs. GenExampleSets generates multiple sets of examples using the groups of q-gram

matches. In descending order of the average q-gram score, it goes through each group and generates a

limited number of example sets. TopK takes at most k highest scored q-gram matches from each group.

SubsetsOfSize creates r number of unique random subsets each with b number of q-gram matches.

TryLearnTransform implements the learning algorithm, which is further expanded in Algorithm 4.

ApplyTransform takes the transformation and applies it to the source table Ts. MaxBySCoverage

returns the transformation (and its output) that results in the highest number of joined rows in the

target table.

4.4.3 Join with Composite Key Columns

There exist cases where a key column in the target table is a composite column that joins with more

than one columns in the source table. The right table in Figure 4.1 is such an example that has both

the president names and their life spans. If we had used this composite column as the target, we would

have failed to find any transformation, because the life span is missing from the left table.

While changing the direction of join in the example above would work, when both source and target

key columns are composite, then neither direction would work. We use existing methods [15, 25] to split

a composite columns by aligning substrings into multiple parts across all rows. For instance, one can

split the key column in the right table in Figure 4.1 into three columns: the last name part before “,”,

the first name part before “ (”, and the life span. Since composite columns usually have strong structural

regularities (e.g., punctuations) this technique produces high quality splits in most cases, from which we

can apply the Auto-Join again.

To summarize, we first attempt transformation joins in two directions. When neither direction results

in a transformation, we can split the key columns of input tables before applying transformation join

for the second time.

Chapter 4. Auto-Join: Smart Join with Transformations 80

Algorithm 5 Overall steps for transformation learning

Require: k . Num. of row pairs to use in each group
Require: r . Num. of example sets from each group
Require: L . Max. num. of example sets to gen.
Require: b . Size of an example set

1: function GenExampleSets(M)
2: sets← {} . Example sets
3: for all (Cs, Cj),m ∈M do . Grouped by col. pair
4: m← TopK(m, k)
5: for all set ∈ SubsetsOfSize(m, b, r) do
6: sets← sets ∪ {(set, Ct)}
7: if |sets| = L then
8: return sets . Reach max. num of sets
9: end if

10: end for
11: end for
12: return sets
13: end function
14: function LearnTransform(M)
15: p← {} . Learned transformations
16: for all set, Ct ∈ GenExampleSets(M) do
17: t← TryLearnTransform(set)
18: if t = null then
19: continue . Failed to learn
20: end if
21: C ← ApplyTransform(t, Ts)
22: p← p ∪ {(C,Ct[y], t, |C ∩ Ct|)}
23: end for
24: return MaxByCoverage(p) . The best transform
25: end function

Chapter 4. Auto-Join: Smart Join with Transformations 81

4.5 Scale Auto-Join to Large Tables

Auto-Join is used as a data exploration feature where interactivity is critical. In deploying this into

a commercial data preparation system, a practical challenge we encountered is to efficiently scale the

algorithm to tables with thousands or even millions of rows. In this section, we explain how to achieve

such scalability for Auto-Join.

Given two tables Ts and Tt, each with millions of rows, with commodity hardware it is unlikely that

we can achieve interactive speed if all values need to be indexed and probed. On the other hand, it

would actually be wasteful to index/probe all values, because for the purpose of transformation learning

we only need enough joinable row pairs for learning to be successful. Intuitively, we can sample rows

from input tables, where the key is to use appropriate sampling rates to minimize processing costs but

still guarantee success with high probability (the danger is that we may under-sample, thus missing join

relationships that exist).

For Auto-Join, we use independent row samples from input tables, because unlike sampling techniques

for equi-join or set-intersection where join keys are known and co-ordinated sampling can be used, in our

problem, the join keys are not known a priori. Co-ordinated q-gram sampling is possible, but the cost

of analyzing and hashing all q-grams is still prohibitive for large tables. Given these issues, we study a

lightweight independent sampling for Auto-Join.

Let Ns, Nt be the number of rows in table Ts, Tt, and ps, pt be their sampling rates, respectively.

Furthermore, let r be the join participation rate, defined as the fraction of records in the target table Tt

that participate in the desired join. Note that the join participation rate needs to be reasonably high

for sampling to succeed – if only one row in a million-row table participates in a join, then we need to

sample a very large fraction of it to find the joinable row pair with high probability. In practice, r is

likely to be high, because joins that humans find interesting likely involve a non-trivial fraction of rows.

We conservatively set r to a low value (e.g., 1%), so that as long as the real join participation is higher

we can succeed with high probability.

We formulate the problem of determining ps and pt as an optimization problem. The objective is to

minimize the total number of sampled rows that need to be indexed and queried, which is Nsps +Ntpt.

The constraint is that we need to sample enough joinable row pairs with high probability. Since the join

participation rate is r, at least Ntptr rows from the target table Tt participate in join. Because each

of these participating row sampled with probability ps, leading to an expectation of µ = Nt · pt · r · ps
joinable row pairs in the sample. This can be seen as a Bernoulli process with a success probability of

ptpsr and Nt total trials.

As discussed in Section 4.4.2, we need a certain number of examples to constrain the space of feasible

transformations enough to produce correct transformations. Let this required number be T (empirically

4 is enough in most cases). Let X be a random variable to denote the total number of joinable row pairs

sampled. We want to find an upperbound for the probability that less than T joinable rows pairs are

sampled, or P (X ≤ T).

Using the Multiplicative Chernoff Bound [14], we know X can be bounded by

P (X ≤ (1− δ)µ) ≤ e− δ
2µ
2 (4.5)

Chapter 4. Auto-Join: Smart Join with Transformations 82

If we have µ ≥ T
1−δ , we can upper-bound the failure probability as

P (X ≤ T) ≤ e− δ
2µ
2 (4.6)

For example, let T = 4, δ = 0.8, we get µ = Ntptpsr > T
1−δ = 20. Using Equation 4.6, we get

P (X ≤ T) ≤ e− 0.64·20
2 = e−6.4 < 0.0017, or in other words, our success probability is at least 99.8%. So

as long as we can ensure µ = Ntptpsr >
T

1−δ , then more than T joinable row pairs will be sampled with

high probability. This becomes the constraint that completes our optimization problem:

min Nsps +Ntpt

s.t. Ntptpsr ≥
T

1− δ , pt, ps ∈ [0, 1]
(4.7)

Using Lagrange we obtain the following closed form optimal solution 8:

pt =

√
T

(1− δ)rNs
, ps =

√
TNs

(1− δ)rN2
t

(4.8)

The corresponding sample sizes can be written as Ntpt = Nt
Ns

√
TNs

(1−δ)r and Nsps = Ns
Nt

√
TNs

(1−δ)r , and both

of them grow sub-linearly in Ns.

As a concrete example, suppose we have two tables both with 1M rows. For some fixed T and δ,

such as T = 4 and δ = 0.8 from the previous example that guarantees success with high probability, and

r = 0.1, we can compute the sampling rates as pt = 0.014 and ps = 0.014, which translates to a small

sample of 14K rows from the 1M-row tables. The optimized sampling significantly reduces processing

costs and improves efficiency for Auto-Join on large tables.

4.6 Constrained Fuzzy Join

For datasets from the Web, inconsistencies are often found in how values are formatting and repre-

sented (e.g., with or without middle name and middle initials for names). Thus, an equi-join using

transformation may miss some row pairs that should join, as Example 4.6.1 shows.

Example 4.6.1. In Figure 4.2, the learned transformation that has the highest coverage on the target

key column Email concatenates the first character of the first name with the last name in the left table,

to get the email addresses. However, this transformation does not cover the target key in the third row

mipayne@forsyth.k12.ga.us as it uses the first two characters in the first name. As a result, the third

rows in the left and right tables cannot be equi-joined.

Traditionally fuzzy join is used to deal with small value inconsistencies. However, given a wide space

of parameters in fuzzy join such as the tokenization, distance function, and threshold, configuring a fuzzy

join that works well for a given problem instance is difficult. This is particularly true for Auto-Join, as

it is intended to be a data exploration feature in spreadsheets where users may not have no the expertise

on fuzzy joins.

8When Ns and Nt are small, there may not be feasible solutions (the required p may be greater than 1). In such cases
we use full tables.

Chapter 4. Auto-Join: Smart Join with Transformations 83

We propose to automatically optimize a fuzzy join configuration using rows that are already equi-

joinable as constraints, so that as we relax matching criteria in fuzzy join, we do not make these rows

to join more than their equi-join results (which indicates that the corresponding fuzzy join is too lax).

Although we use this optimization in the context of Auto-Join, the techniques here are of independent

interest and can be used to optimize general fuzzy join.

Given a column C produced by transformations on the source table, and K a key column from the

target table, where the join is 1:1 or N:1, our optimization objective is to maximize the number of rows

in the target table that can be fuzzy-joined between C and K, subjecting to the constraint on join

cardinality.

Specifically, given a tokenziation scheme t from a space of possible configurations (e.g., word, 2-gram,

3-gram, etc.), a distance function d (e.g., Jaccard, Cosine), and a distance threshold (normalized into a

fixed range, e.g., [0,1]). The rows that can fuzzy join for some given t, d, s, denoted as Ft,d,s(C,K), is

defined as follow.

Ft,d,s(C,K) = {vk |∃vk ∈ K, vc ∈ C, dt(vk, vc) ≤ s} (4.9)

where dt is the distance d using a given tokenization t.

This objective alone tends to produce overly lax matches. The counteracting constraint is to respect

join cardinality. Specifically, after using fuzzy join every value vc ∈ C cannot join with more than one

value vk ∈ K. This can be viewed as a key-foreign-key join constraint – a foreign-key value should not

join with two key values (even with fuzzy join).

Additionally, we can optionally require that each vk ∈ K cannot join with more than one distinct

vc ∈ C. This is an optional constraint assuming that on the foreign key side, each entity is only

represented with one distinct value. E.g., if we already have “George W. Bush” in a table, we would not

have “George Bush” or “George W. Bush Jr.” for the same person. On the other hand a very close

value “George H. W. Bush” in the same column likely corresponds to a different entity and should not

join with the same key as “George W. Bush”. This optional requirement helps to ensure high precision.

These requirements lead to the following two constraints in the optimization problem.

arg max
t,d,s

|Ft,d,s(C,K)|

s.t. |{vk | vk ∈ K, dt(vc, vk) ≤ s}| ≤ 1,∀vc ∈ C
|{vc | vc ∈ C, dt(vc, vk) ≤ s}| ≤ 1,∀vk ∈ K

(4.10)

We can search over possible t, d, and s from a given parameterization space. The following example

illustrates how fuzzy join optimzation is used for joining tables in Figure 4.1.

Example 4.6.2. Continue with Example 4.6.1, after applying the transformation, the output for Missy

Payne in the left table is mpayne@forsyth.k12.ga.us, which cannot be equi-joined with the email

mipayne@forsyth.k12.ga.us in the right table. Using 3-gram tokenizer and Jaccard distance, the dis-

tance between the two is 0.125. Thus, a distance threshold above 0.125 would join these two rows. On the

other hand, if we use a larger distance threshold such as 0.4, kmoore@forsyth.k12.ga.us (transforma-

tion output from the left table) would join mipayne@forsyth.k12.ga.us (in the right table), breaking the

second constraint in Equation 4.10 as mipayne@forsyth.k12.ga.us is joined with two distinct values.

Chapter 4. Auto-Join: Smart Join with Transformations 84

The fuzzy join optimization algorithm finds the maximum threshold that still satisfies the join constraints,

thus the optimal threshold in this case is 0.2 or 0.3.

Due to the monotonicity of the objective function with respect to the distance threshold, we use

binary search to find the optimal distance threshold.

Algorithm 6 provides the complete pseudo code for performing distance threshold optimization.

OptimizeThreshold takes the derived source column from transformation C and the target key column

K, and uses binary search to find the optimal distance threshold. CheckConstraint is called at each

iteration of the search to verify if the current threshold satisfies the join constraints in Equation 4.10.

4.7 Experiments

In this section we discuss experimental results on join quality (precision/recall) as well as scalability.

4.7.1 Benchmark Datasets

Benchmarks. We constructed two benchmark, Web and Enterprise, using test cases from real datasets;

as well as a synthetic benchmark Synthetic.

The Web benchmark is constructed using tables on the Web. We sampled table-intent queries from

the Bing search engine (e.g., “list of US presidents”). We then used Google Tables9 to find a list of tables

for that query (e.g., U.S. presidents), and selected pairs of tables that use different representations but

are still joinable under transformation (e.g., Figure 4.1). We searched 17 topics and collected 31 table

pairs. We observe that tables on the Web often have minor inconsistencies (e.g., formatting differences,

with or without middle initials in names, etc.) for the same entity mentions, which cannot be easily

accounted for using transformations alone. This makes Web a difficult benchmark.

The Enterprise benchmark contains 38 test cases, each of which has a pair of tables extracted from

spreadsheet files found in the intranet of a large enterprise (e.g., Figure 4.3 and Figure 4.4). The test

cases are constructed by grouping tables with common topics. Comparing to Web that has mostly 1-to-1,

entity-to-entity joins, Enterprise also has cases with hierarchical N:1 joins (e.g., Figure 4.3).

Lastly, since Warren and Tompa studied a close variant of the auto-join problem and used synthetic

datasets for evaluation, as a validation test we reconstruct 4 datasets that they used [68] as the Synthetic

benchmark. The 4 test cases, UserID, Time, NameConcat, and Citeseer, either split or merge columns

to produce target tables [68].

In all these benchmark cases, equi-join would fail. We manually created the ground truth join result

for each pair of tables, by determining what rows in one table should join with what rows from the other

table.

Evaluation metrics. We use the following metrics to measure join quality. Denote by G the row

pairs in the ground truth join results, J the joined row pairs produced by an algorithm. We measure

join quality using the standard precision and recall, defined as:

precision =
|G ∩ J |
|J | , recall =

|G ∩ J |
|G|

9https://research.google.com/tables

https://research.google.com/tables

Chapter 4. Auto-Join: Smart Join with Transformations 85

Algorithm 6 Find the distance threshold that produces the maximum fuzzy-join coverage on the target
table (Equation 4.9) while satisfying the join constraints (Equation 4.10).

Require: dt . Distance function using tokenization t
Require: δ ∈ (0.0, 1.0) . Stopping condition

1: function OptimizeThreshold(C, K)
2: coveragebest ← 0
3: a← 0.0, b← 1.0
4: t0 ← 0.0, t← a+ (b− a)/2
5: while |s− s0| > δ do
6: if CheckConstraint(C,K, s) then
7: coverage← Ft,d,s(C,K)
8: if coverage > coveragebest then
9: coveragebest ← coverage

10: end if
11: b← s
12: else
13: a← s
14: end if
15: s0 ← s
16: s← a+ (b− i)/2
17: end while
18: if coveragebest > 0 then
19: return s0 . Found optimal threshold
20: end if
21: return −1.0 . No feasible threshold found
22: end function
23: function CheckConstraint(C, K, s)
24: matched← {}
25: for all u ∈ Distinct(C) do
26: n′ ← 0
27: for all v ∈ K do
28: if dt(u, v) ≤ s then
29: if v ∈ matched then
30: return false
31: end if
32: matched← matched ∪ {v}
33: n′ ← n′ + 1
34: if n′ > 1 then
35: return false
36: end if
37: end if
38: end for
39: end for
40: return true
41: end function

Chapter 4. Auto-Join: Smart Join with Transformations 86

We also report the F-score that is the harmonic mean of precision and recall. When an algorithm

produces empty join results, we do not include it in computing average precision, but we include it in

average recall and F-score.

4.7.2 Methods Compared

We implemented 8 methods for comparison.

Substring Matching (SM). We implemented the algorithm by Warren and Tompa [68]. This

algorithm uses a greedy strategy to find a translation formula, which is a sequence of indexes of the

source columns’ substrings that matches parts of the target column.

Fuzzy Join - Oracle (FJ-O). It is known that a major difficulty of using fuzzy join is the need to find

the right configuration from a large space of parameters, which includes different tokenization schemes,

distance functions, and distance thresholds, etc. To be more favorable to fuzzy join based methods, we

consider an extensive combination of configurations. Specifically, for tokenization we use {Exact, Lower,

Split, Word, and q-gram for q ∈ [2, 10]} (similar to ones used in [33]); for distance functions we consider

{Intersect, Jaccard, Dice, MaxInclusion}; and for thresholds we use 10 equally-distanced values (e.g.,

{0.1, 0.2, ..., 1} for Jaccard). This creates a total of 520 unique parameter configurations. We execute

each of these fuzzy joins on columns that are used in the ground truth as if they are known a priori,

and we join each row with top-1 fuzzy match in the other table to maintain high precision. We report

the best configuration that has the highest average F-score across all cases.

Note that this method acts much like an “Oracle” – it has access to not only the columns that

join, but also the ground truth join result to “fine tune” its configuration for the best performance.

These optimizations are not feasible in practice, so this provides an upper bound on what fuzzy join like

methods can achieve.

Fuzzy Join - Column (FJ-C). In this method, we perform fuzzy join on columns that participate

in joins in the ground truth as if these are known, but without using detailed row-level ground truth

of which rows should join with which for configuration optimization. We use techniques discussed in

Section 4.6 to determine the best parameter configuration.

Fuzzy Join - Full Row (FJ-FR). This fuzzy join variant is similar to FJ-C, but we do not provide

the information on which columns are used in join in the ground truth. As a result, this approach

considers full rows in each table. This represents a realistic scenario of how fuzzy join would be used

without ground truth.

Dynamic q-gram - Precision (DQ-P). Since q-grams already identify some joinable row-pairs

(from which we generate transformations), one may wonder if it is sufficient to perform join using q-

gram matches alone. In this method we use matches produced in Section 4.4.1, and only allow 1-to-1

q-gram matches to ensure high precision. Joinable row pairs are used directly as join result.

Dynamic q-gram - Recall (DQ-R). This algorithm is similar to DQ-P, except that we allow n-to-1

q-gram matches as join results. This produces results of higher recall but can also lead to lower precision

compared to DQ-P.

Auto-Join (AJ). This is our Auto-Join algorithm. We create a variant Auto-Join - Equality

(shorten as AJ-E) that only uses equality join without the fuzzy join described in Section 4.6.

Chapter 4. Auto-Join: Smart Join with Transformations 87

0.0 0.2 0.4 0.6 0.8 1.0

Precision

0.0

0.2

0.4

0.6

0.8

1.0

R
ec

al
l

DQ-R

FJ-O

DQ-P

FJ-C

FJ-FR
SM

AJ

(a) Enterprise Benchmark

0.0 0.2 0.4 0.6 0.8 1.0

Precision

0.0

0.2

0.4

0.6

0.8

1.0

R
ec

al
l

FJ-C

FJ-FR

SM

DQ-P

DQ-R

FJ-O AJ

AJ-E

(b) Web Table Benchmark

0.0 0.2 0.4 0.6 0.8 1.0

Precision

0.0

0.2

0.4

0.6

0.8

1.0

R
ec

al
l

DQ-P
DQ-R

FJ-O

FJ-FR

SM

FJ-C

AJ

(c) Synthetic Benchmark

Figure 4.6: Average precision/recall comparison for all methods on three benchmarks.

4.7.3 Quality Comparison

In this section, we discuss the experimental results on the three benchmarks. Figure 4.6 shows the

average precision and recall on all three benchmarks. Table 4.2, Figure 4.7 and 4.8 show the F-scores

on all the benchmark datasets.

Enterprise Benchmark

Enterprise contains tables that are mostly clean and well structured – values are consistently encoded

with few typos or inconsistencies as they are likely dumped from sources like relational databases (e.g.,

Figure 4.3 and Figure 4.4). Unlike other benchmarks, a significant fraction of joins are N:1 join through

hierarchically relationships (e.g., Figure 4.3).

The precision and recall results are show in Figure 4.6a. First, Auto-Join (AJ) achieves near-perfect

precision (0.9997) and recall (0.9781) on average. In comparison, the oracle baseline FJ-O has precision

at 0.9756 and recall at 0.9755, which is inferior to Auto-Join. Recall that FJ-O is the Oracle version of

fuzzy join that uses ground truth to find the best possible configuration, which provides an upper-bound

for fuzzy join and is not feasible in practice. This demonstrates the advantage of transformation-based

join over fuzzy join when consistent transformations exist. We note that in this test case using equality-

join only AJ-E (with no optimized fuzzy join) produces virtually the same quality results, because values

in this benchmark are clean and well structured.

Second, the SM algorithm achieves lower precision and recall then other baselines methods. This

shows that their approach in building the translation formula using fixed substring indexes, as mentioned

earlier in Section 4.7.2, is not expressive enough to handle transformations needed in real join scenarios

we encountered.

Third, fuzzy join algorithms (FJ-FR and FJ-C) produced good precision due to our conservative

fuzzy-join optimization. However, their recall is low, because in certain cases where the join values are

hierarchical, non-joinable row pairs may also have low syntactic distance (e.g., Figure 4.3), which makes

it difficult to differentiate between joinable and non-joinable row pairs using distance functions alone.

Lastly, DQ-P produces joins based on 1-to-1 q-gram matches, which has high precision but low recall.

This is consistent with our analysis that 1-to-1 q-gram matches are often good joinable row pairs for

transformation learning. On the other hand, DQ-R relaxes the matching constraints, and as expected

Chapter 4. Auto-Join: Smart Join with Transformations 88

uk dist
ric

t 1

su
bseg

. wor
kloa

d
1

biz
op

s metr
ics

co
ntra

ct
number

co
nve

rg
en

ce
ses

sio
n

hld
1

hld
2

lea
d

ce
nter

nam
e em

ail
1

nam
e em

ail
2

nam
e em

ail
3
nyd

reg
ion

at
u

2

uk at
u

ser
vice

lin
e 2

ser
vice

lin
e 1

su
bseg

. wor
kloa

d
2

su
bseg

. wor
kloa

d
3

su
bseg

. wor
kloa

d
4

su
bseg

. wor
kloa

d
5

uk ad
ag

en
cie

s 3

su
bsid

. wor
kloa

d
1

su
bsid

. wor
kloa

d
2

su
bsid

. wor
kloa

d
3

su
bsid

. wor
kloa

d
4

uk ad
ag

en
cie

s 2

uk ad
ag

en
cie

s 1

industr
y ca

teg
or

y 1

industr
y ca

teg
or

y 3

ser
vice

lin
e 3

sw
ed

en
ad

dres
s 2

sw
ed

en
ad

dres
s 1

industr
y ca

teg
or

y 2

en
d

ite
m

ca
teg

or
y

ad
ser

ve
r

for
ca

st
look

ups

uk ad
sec

to
r

reg
ion

at
u

1

Datasets

0.0

0.2

0.4

0.6

0.8

1.0

F
1

S
co

re

DQ-P

DQ-R

FJ-C

AJ

Figure 4.7: F-Scores on Enterprise Benchmark.

produces better recall but lower precision.

Figure 4.7 shows the F-scores on individual cases. It is clear that in most datasets, AJ achieved higher

scores than the baselines, demonstrating that AJ is more resilient to complications such as N:1 joins and

common substrings between joinable and non-joinable row pairs. In the test cases uk ad sector and

region atu 1, AJ did worse than DQ methods. A close inspection reveals that it finds an alternative

transformation that only covers a subset of the joinable results.

Bing Web Benchmark

Unlike Enterprise that have a significant number of N:1 joins, in Web most join cases are 1:1, entity-to-

entity joins (e.g., Figure 4.1 and Figure 4.2), and are considerably more dirty with ad-hoc inconsistencies.

Figure 4.6b gives the quality comparisons. First, AJ has a considerably higher average precision

than the oracle fuzzy join FJ-O, but a lower average recall. This is not surprising because FJ-O uses

ground truth to optimizing its configuration parameters, which is not feasible in practice. We do notice

that because FJ-O always joins a row with its top-1 match by score as long as the score is above a

certain threshold, which leads to many false positives and thus lower precision. The problem is the

most apparent for cases where most rows from one table do not actually participate in join. This is an

inherent shortcoming of top-1 fuzzy join methods that AJ can overcome.

We see in Figure 4.6b that Auto-Join (AJ) has a higher average recall than its equality join version,

Chapter 4. Auto-Join: Smart Join with Transformations 89

ve
ge

ta
bles

ch
inese

prov
ince

s

tex
as

go
vs 2

new
yo

rk
go

vs 3

sh
ar

if
user

nam
es

sh
ar

if
em

ail
s

us pres
iden

ts
4

k12
nam

es

us pres
iden

ts
1

us pres
iden

ts
6

us pres
iden

ts
5

us pres
iden

ts
3

fru
its

2

bea
tle

s so
ngs

us pres
iden

ts
2

tex
as

go
vs 1

fsu
user

nam
es

new
yo

rk
go

vs 5

new
yo

rk
go

vs 4

new
yo

rk
go

vs 1

ca
lifo

rn
ia

go
vs 1

fru
its

1

ca
lifo

rn
ia

go
vs 2

nat
ion

al
par

ks 1

us cit
iie

s

nat
ion

al
par

ks 2

new
yo

rk
go

vs 2

ch
ris

tm
as

so
ngs

2

uk pms

duke
cs

pro
fs

ch
ris

tm
as

so
ngs

1

Datasets

0.0

0.2

0.4

0.6

0.8

1.0

F
1

S
co

re

DQ-P

DQ-R

FJ-C

AJ-E

AJ

Figure 4.8: F-Scores on Web Table Benchmark.

AJ-E (0.8840 vs. 0.7757), but slightly lower precision (0.9504 vs. 0.9758). This is because inconsistencies

exist in certain cases, where one correct transformation alone does apply to all rows that should join. In

such cases, optimized fuzzy join brings significant gain in recall (≈ 0.11), with a small loss in precision

(≈ 0.025).

SM does not perform well compared to other methods. Transformations required in Web benchmark

are often too more complex for SM that relies on fixed substring indexes.

We analyze individual cases for which FJ-C produces higher F-scores than AJ, as shown in Figure 4.8.

For cases like uk pms, we found that although AJ learnt the correct transformation and achieved a perfect

precision, the fuzzy join step was not able to cover the rest of joinable row pairs that have inconsistencies

in entities’ naming. For complex cases like duke cs profs, the correct join actually requires more than

one transformations in order to join all rows. Although AJ learns one transformation with perfect

precision, it falls short in recall as not all joinable rows are covered. For these two datasets, the fuzzy

distances between the non-joinable row pairs using the original join-columns are larger than when using

the derived column. So it is easier for FJ-C, which uses the original join-columns, to differentiate between

joinable and non-joinable row pairs and achieve higher F-score, even though FJ-C and AJ uses the same

fuzzy join method.

Chapter 4. Auto-Join: Smart Join with Transformations 90

Table 4.2: F-Scores on Synthetic Benchmark

Citeseer NameConcat Time UserID

DQ-P 0.9826 0.1264 0.0392 0.7572

DQ-R 0.9826 0.1356 0.2025 0.6638

FJ-C 0.4637 0.1651 1.0000 0.8795

SM 0.0291 0.1186 0.5464 0.7553

AJ 1.0000 1.0000 1.0000 1.0000

Synthetic Benchmark

Synthetic contains cases synthetically generated as described in prior work [68] using split or concate-

nation. The cases here are relatively simple and we use these as a validation test to complement with

our previous benchmarks.

Figure 4.6c shows that AJ achieves perfect precision and recall, matching the oracle fuzzy join FJ-O.

Other methods produce results similar to the previous benchmarks.

Table 4.2 shows the F-scores on individual cases. Both of DQ-P and DQ-R performs poorly on the

Time dataset. Time is synthetically generated by concatenating three columns with second (0-59), minute

(0-59), and hour (0-23) into a time column separated by “:”. Due to the small space of numbers, there

are many common substrings and few 1-to-1 or n-to-1 q-gram matches, thus the low scores of DQ-P and

DQ-R. These two approaches work well on Citeseer, which has many 1-to-1 q-gram matches due to

unique author names and publication titles. AJ achieved perfect F-scores on all datasets, since it just

needs a few examples to produce the generalized transformations needed.

We found that SM achieved good recall in this benchmark, however, its average precision is relatively

low (see Figure 4.6c). This result is not as well as what is reported in the original work [68]. This is likely

because the method is data-sensitive, and it tends to fall into a local optimum with its use of greedy

strategy in finding a translation formula. Since the translation formula is constructed incrementally by

inspecting one source column at a time with no reverse-back, the addition of a single incorrect partial

formula stops the whole algorithm from finding the globally optimal formula. This step is quite sensitive

to the variance in the lengths of the substrings that matches with the target column. This is evident

in Table 4.2, as SM did relatively better in Time and UserID, which has smaller variances (Time has

zero variance, and UserID uses a fixed-length substring in the translation formula), while the scores in

Citeseer and NameConcat are much lower.

4.7.4 Scalability Evaluation

We used the DBLP datasets10 to evaluate the scalability of SM, FJ-O, FJ-C, and AJ-E. In the DBLP data

set, each record has three fields: authors, title, and year of publication. For the purpose of scalability

evaluation, we create a synthetic target table that is the concatenation of these three fields. We sample

N records from the source table and the target table where N = {100, 1K, 10K, 100K, 1M}, and measure

the corresponding end-to-end execution time. Some existing methods are very slow on large data sets

so we set a timeout at 2 hours. Note that we omit results for FJ-FR since it is identical to FJ-C for

10http://dblp.uni-trier.de/

http://dblp.uni-trier.de/

Chapter 4. Auto-Join: Smart Join with Transformations 91

100 1K 10K 100K 1M

Number of Rows

10−1

100

101

102

103

104

R
u

n
n

in
g

T
im

e
(s

ec
)

SM

FJ-O

FJ-C

AJ-E

Figure 4.9: End-to-end running time comparison

this data set. We also do not compare with DQ-R and DQ-P since these are sub-components from the

proposed AJ method.

Figure 4.9 shows the end-to-end running times. AJ-E is 2-3 orders of magnitude faster than existing

methods. In particular, SM and FJ-O time out at 10K rows, and FJ-C times out at 100K rows; the

runtime of these methods grow quickly with the table sizes.

For AJ-E, we break down the time into three stages – indexing, transformation-generation, and equi-

join. We find that equi-join is efficient and accounts for less than 5% of overall execution time. The cost

of transformation learning increases slowly, from 2.5 seconds at 100 rows to 6.4 seconds at 1M rows, as

the number of attempts for transformations learning does not increase with the table size. The indexing

time becomes a dominant factor as the number of rows grows over 100K.

In addition, we experimented Auto-Join without the optimized row sampling (Section 4.5) to see its

impact on efficiency. Without sampling the algorithm reaches timeout on the data set with 1M rows,

which shows the importance of sampling-based optimization for scaling to large data sets.

4.8 Summary

In this chapter, we have presented Auto-Join, an algorithm for automatically join tables by generating

transformation programs, all without user input, to solve the problem of ad hoc script writing for data

scientists. For efficiency, the algorithm uses a sampling technique to avoid using the whole table, and

maintains interactive response time for tables under 10K rows. Auto-Join has been integrated into the

Chapter 4. Auto-Join: Smart Join with Transformations 92

Azure Machine Learning Data Prep SDK11. Interesting future directions include automatically joining

tables with semantic relationships, as well as complex domain-specific functions.

11https://docs.microsoft.com/en-us/python/api/azureml-dataprep/azureml.dataprep.api.builders.

joinbuilder

https://docs.microsoft.com/en-us/python/api/azureml-dataprep/azureml.dataprep.api.builders.joinbuilder
https://docs.microsoft.com/en-us/python/api/azureml-dataprep/azureml.dataprep.api.builders.joinbuilder

Chapter 5

Conclusion

In this thesis, we introduced two important problems in data lakes: searching for joinable tables, and

auto-generating syntactic transformation for joins. For the search problem, we presented two unique

solutions: LSH Ensemble (Chapter 2) that leverages Locality Sensitive Hashing to find approximate

results given a threshold on set containment, and JOSIE (Chapter 3) that finds exact top-k results

through alternating probes of posting lists and sets guided by a cost model that minimizes read cost.

For the join problem, we presented Auto-Join (Chapter 4) that generates syntactic transformations

without user input, and scales to tables up to 10k rows while maintaining interactive speed. All the

solutions have been validated over tables from real data lakes such as Open Data. The work presented

in this thesis contributes to making it easier and faster for data scientists to find tables in data lakes,

and perform ad hoc joins with transformations automatically – making data scientists more efficient in

doing their job.

5.1 Other Contributions

This thesis mostly focuses on our algorithmic contributions. In this section, we will present two additional

contributions toward data lake management: an interactive joinable table search system and an Open

Source Python library for MinHash, LSH, and LSH Ensemble.

5.1.1 A Joinable Table Search System

We developed a user-facing system for interactive joinable table search. Figure 5.1 illustrates the overall

design of this system, which won the Best Demo Award at VLDB 2017 [75]. The system works as follows.

Given a data lake of tables, it first processes the tables to extract sets from columns, and then index

these sets in a search index. From the user interface, the user inputs a table. The system then processes

the table, extracts the query set, and then queries the search index. The search index returns a list of

column and table IDs, using which the user interface renders the search results. The original system

uses LSH Ensemble for the search index, however, it can easily be changed to use JOSIE.

The system is unique in that it allows the user to perform joins between the input table and any

table found in the data lake, and apply a custom SQL query (with SELECT, SUM, GROUP BY, etc.) to

transform the join result. This allows a user to quickly prepare and clean an extended table for analysis.

Furthermore, the user can use the transformed table as the input table for another round of search, join,

93

Chapter 5. Conclusion 94

Tables

Preprocessing

(e.g. extract sets)

Sets

Search

Index

Indexing

Table
Query

Set

Preprocessing

(e.g. extract set)

Query
Set Search Indexes

• LSH Ensemble (VLDB 2016)

• JOSIE (SIGMOD 2019)

Navigating Open Data Linkages, Best Demo Award (VLDB 2017)

Column

and Table

IDs

User Interface

Figure 5.1: A Joinable Table Search System

and transformation. Thus, the user can expand the original input table with unlimited number of tables

in the data lake.

Another feature is the sharing of any join or transformation result through a URL. This allows the

user to share the current state of table preparation with others, who simply use the URL to recreate

the same state. The system utilizes a result cache to avoid re-running the joins and transformations to

recreate the state.

5.1.2 Open Source

During the development of LSH Ensemble, we implemented several data sketch algorithms including

MinHash [9], MinHash LSH [31], MinHash LSH Forest [4], and our algorithm LSH Ensemble. The

implementations are bundled in a Python package called datasketch, which can be installed via a

pip install datasketch terminal command. The source code is open source, hosted on Github 1.

After making this Python package and source code available, we found there are many interested users.

This discovery lead to an extensive effort to design a general API for all the algorithms, and write

detailed documentation on their usage with code examples. The effort has since paid off: the number of

users increased tremendously. To date, the datasketch Python package is a dependency of 85 Python

projects including ones from Google and Stanford NLP Lab. The source code repository has merged 29

pull requests containing code contributions from 9 external developers, closed 51 issues related to usage

questions and bugs, and accumulated over 830 stars (i.e., endorsements). This Open Source project has

made it much easier for developers to integrate the products of our research within their own systems,

and encouraged subsequent research work. For example, the Aurum Data Discovery System [26] uses

MinHash LSH from datasketch.

1https://github.com/ekzhu/datasketch

https://github.com/ekzhu/datasketch

Chapter 5. Conclusion 95

5.2 Lessons Learned

We have learned some valuable lessons through all the hard work put into this thesis. These lessons

include insights and approaches to algorithm design, real data distributions, performance tuning, and

Open Source strategy. The lessons are not meant to be universal rules that guarantee positive gain,

rather, they are useful case studies to be reviewed when approaching a new problem.

5.2.1 The Two-Stage Design Principle of Retrieval Processes

To design a retrieval process, such as searching for joinable tables in a data lake, one can often apply

the two-stage design principle: first candidate generation and then candidate refinement.

In the candidate generation stage, the retrieval algorithm identifies, typically using a search index, a

possibly large set of candidates that may be qualified for showing the end user. This stage is intended for

maximizing recall, so false positive candidates are tolerated. LSH Ensemble is a good example of a search

index that is designed for candidate generation: given a containment threshold, it finds candidate sets

that likely meet the threshold (with high probability), while also including false positives in the result.

The candidate generation process can impact the overall search performance by producing too many

false positive candidates, so it is important to tune for better precision without sacrificing recall. LSH

Ensemble solves this problem by 1) using the approximate containment to Jaccard similarity translation

function that does not introduce false negatives, and 2) using partitioning to reduce false positives.

In the candidate refinement stage, the retrieval algorithm uses a more expensive approach, typically

a linear scan, to compute the relevance scores of the candidates generated in the previous stage. This

stage is intended for maximizing precision, so false positives are typically removed. For candidate sets

generated by LSH Ensemble, we simply compute their exact containment, and remove sets that do not

satisfy the containment threshold.

The two-stage design principle is beneficial when the candidate generation stage has high recall,

especially when there is a fast search index (e.g., LSH Ensemble or JOSIE) that can produce candidates

based on a lower bound or “prerequisite” of the actual relevance measure. For example, in joinable

table search, the “prerequisite” can be a containment threshold, and the actual relevance measure can

be a combination of different syntactic and semantic signals such as join columns’ data type (e.g., date,

geographic location, person names, etc.), number of rows in the join result, and whether the join columns

are key columns. The refinement stage can also include additional steps such as filtering out semantically

irrelevant candidate columns that do not lead to meaningful join (e.g., joining years with integer keys).

Such complex relevance measures may not be supported by any available search index, so the candidate

generation stage is used to speed up the overall retrieval process without resorting to a linear scan of all

the data being searched over.

5.2.2 Evaluate Using Real Data

Algorithms’ performance can be significantly affected by specific data characteristics such as set size and

frequency distributions. Thus, when evaluating an algorithm, it is important to go beyond synthetic

benchmarks and use real data because real data may have characteristics that the synthetic benchmarks

do not capture.

During the process of developing LSH Ensemble, we used a synthetic benchmark generated using

a normal distribution of set sizes. This led to a very different algorithm, which performed extremely

Chapter 5. Conclusion 96

well on the benchmark, but poorly on the Open Data lakes. It took some time before we realized the

difference in set sizes was the root cause. After an extensive profiling of the Open Data lakes and

experimenting with different algorithms, we understood that the set size distribution is also the reason

why Asymmetric Minwise Hashing [60] has high accuracy on Twitter data but poor accuracy on data

lakes. In the end, we looked for ways to reduce the difference in set sizes, and that led to the discovery

of the partitioning approach used by LSH Ensemble.

JOSIE was developed with real data lakes in mind. When evaluating the state-of-the-art exact top-

k techniques (MergeList and ProbeSet) for overlap set similarity search, we found that MergeList

outperformed ProbeSet on the Open Data lakes, but ProbeSet outperformed MergeList on WDC Web

Tables. We immediately knew this was caused by specific data characteristics. Upon investigation,

we found that the Open Data lakes have large sets and relatively short posting lists, while WDC Web

Tables have small sets and relatively long posting lists. ProbeSet mostly reads sets, so it performs well

on WDC Web Tables, and MergeList only reads posting lists, so it performs well on the Open Data

lakes. This discovery lead to the development of JOSIE, which always picks the direction that yields

lower read costs. In the end, JOSIE outperforms both MergeList and ProbeSet.

5.2.3 Use Simple Methods to Optimize for Performance

This lesson is in spirit similar to the classic System-R approach to query optimization, which only

considers “left-deep” query plans in order to shrink the plan space and search complexity. The rational

is that the query plan optimization should be inexpensive and much cheaper than executing the query

plan itself. JOSIE uses a cost model to optimize the probing sequence for minimal read cost, and

the cost model requires an estimation of the expected intersection size between the query set and any

candidate set. When developing JOSIE, we have considered different methods for intersection size

estimation: some methods rely on global co-occurrence probabilities of token pairs, and one method

uses the Hypergeometric probability distribution to estimate the total number of overlapping tokens. In

the end, we settled with our initial method that uses a uniform probability distribution assumption of

overlapping tokens in the query set (see Section 3.3.2), because this method is the fastest to execute,

requires no expensive computation of prior distributions (e.g., global co-occurrence probabilities), and

yields a large improvement in overall query performance at little expense.

5.2.4 Rare Signals are Strong Signals

This lesson comes from the development of Auto-Join. In searching for correct input/output learning

example row pairs in Auto-Join, the space of all possible learning examples are all pairs of rows from the

source and target tables – most of pairs are incorrect. To efficiently locate good learning examples, Auto-

Join starts with row pairs with rare q-grams that occur exactly once in the source table and once in the

target table. The rational behind this is that it is very unlikely for such q-gram to occur, and when they

do, they provide very strong signals for the corresponding row pairs to have potential join relationships.

This rational led to Auto-Join’s first component that discovers a ranked list of input/output examples

for transformation learning. In general, when searching over a large space for solutions, we may want to

start with potential solutions with rare feature instances.

Chapter 5. Conclusion 97

5.3 Next Step: A Self-Service Data Discovery System

An important next step from this thesis is to combine all three techniques: LSH Ensemble, JOSIE, and

Auto-Join, together with other components based on very recent new data discovery work developed in

parallel with our work [51, 26, 35, 27], to create a self-service data discovery system for data scientists.

The objective of such a system is to provide table discovery over multiple massive data lakes such as

Open Data and enterprise data lakes, to help data scientists quickly identify relevant data sets and

augment (via join or union) their existing tables.

5.3.1 Generalized Joinable Table Search

One important feature of this system is generalized joinable table search – given a query table, the

system finds tables that can be joined with the query table by equi-join or transformation-based join.

The approximate (i.e., LSH Ensemble) and exact technique (i.e., JOSIE) can be used together: the

system can issue both the approximate and exact queries at the same time, and present the results from

the approximate algorithm as soon as they are available, while the exact results can be used to refine

the final output. Since the most promising results are likely to be first returned by the approximate

algorithm and the user needs at least a few seconds to read each result, the less promising results will

be refined by the time the user reaches them.

A more challenging problem is how to find joinable tables with transformation-based joins. The

search algorithms, LSH Ensemble and JOSIE, presented in this thesis assume a simple model for tables

that represents each column as a set, and joinable values must match exactly (i.e., equi-join). On the

other hand, the join algorithm, Auto-Join, solves the problem when the joinable columns do not match

exactly, but require syntactic transformations. One simple approach to make columns transformation-

join searchable is to tokenize data values based on a syntactic pattern that is present in this column,

and index the column using tokens (or a MinHash of the tokens). For example, data values in an Email

column with the syntactic pattern “first.last@host.com” may be tokenized into “first”, “last”,

and “host.com”, and the resulting tokens are inserted into a search index as keys to this column.

The rational behind this approach is that transformations typically do not break tokens, so two joinable

columns should have many tokens in common. A regular expression synthesizer such as the one developed

by Ilyas et al. [35] can be used to find the syntactic pattern. Furthermore, we can assign higher weights

to the more infrequent tokens that match with the query column, because the infrequent token-matches

are likely the result of some transformations, as described in Section 4.4.1 of this thesis.

Handling transformation-based join improves the recall, however, it is equally important to improve

the precision of the search result. We can make two additions to the existing search algorithms for

better precision. The first addition is to filter out irrelevant tables that are joinable by pure accidental

value matches. For example, one may find tables with an integer key column that is joinable with a

year column in the query table. To filter out these irrelevant tables, we can use the word embedding of

column names when available (used by Fernandez et al. [27]) to compute the semantic similarity between

the query column and joinable columns in the candidate tables, and then remove candidate tables that

only have joinable columns that are semantically dissimilar with the query column. The second addition

for better precision is to utilize multi-column join signals – rank candidate tables that are joinable on

more than one column with the query table higher than those that are joinable on one column only.

The rational behind this is that multi-column joins are likely to be more meaningful than single column

Chapter 5. Conclusion 98

joins. For example, a table T1 that joins on both Province and City columns is likely a better candidate

than a table T2 that joins only on Province, because the records in T1 share more information with the

records in the query table.

5.3.2 Unionable Table Search

Another important feature of a self-service data discovery system is unionable table search. Different

from join, the union operation puts records from different tables into a common schema. For example, we

may want to create a master rental listing by taking records obtained from different real estate agencies.

The unionable table search problem, thus, is to find tables that can be unioned with the query table, so

the user can create a “master list” similar to the one in the previous example. Unionable table search can

be useful to data scientists who are looking for more training data to train a machine learning model.

In collaboration with Fatemeh Nargesian, we have developed a unionable table search algorithm [51]

that scales to data lakes with hundreds of thousands of tables. This algorithm utilizes an ensemble

of column-based signals (syntactic, ontological, and natural language) to identify columns semantically

similar with the query table’s columns, and then uses a scoring function that takes the column-based

signals to produce a ranked list of candidate tables that are unionable with the query table. Another

approach to find unionable tables using schema information has been developed by Lehmberg et al. [39],

and it has been tested on WDC Web Tables. We can use these algorithms to implement a unionable

table search feature of the data discovery system. Ultimately, a self-service data discovery system should

be able to determine if a candidate table should be unioned or joined with a query table (not making

the data scientist choose a priori).

5.4 An Outlook on Data Lake Management2

Our vision for the future centers on going from database management to data lake management. A data

lake is a massive collection of raw files that: (1) may be hosted in different, typically distributed, storage

systems; (2) may vary in their formats; (3) may not be accompanied by any useful metadata or may use

different formats to describe their metadata; and (4) may change autonomously over time. Enterprises

have embraced data lakes for a variety of reasons. First, data lakes decouple data producers (for example,

operational systems) from data consumers (such as, reporting and predictive analytic systems). For data

science, data lakes provide a convenient storage layer for experimental data, both the input and output

of data analysis and learning tasks. The creation and use of data can be done autonomously without

coordination with other programs or analysts.

Figure 5.2 shows a very high-level view of the architecture we envision for a data lake. The data

sources may include legacy operational systems (operating in Cobol or other older formats), information

scrapped from the Web and social media (including the Open Data and Web Tables we have studied), or

data from for-profit data brokers (such as Thompson Reuters or LexisNexis). The actual type information

and metadata may be represented in numerous different formats. Other data may be pure documents

(unstructured data) or semi-structured logs, or social media information.

My thesis has contributed two of the first indices for data discovery over tables (or sets) in a data

lake. Going forward, we envision a growing interest in coupling information extraction with new forms

2This section will be published in “Data Lake Management: Challenges and Opportunities” [50], a collaboration with
Fatemeh Nargesian, Renée J. Miller, Ken Q. Pu, and Patricia C. Arocena.

Chapter 5. Conclusion 99

z

Versioning

Data Lake

Unified Data
Model

Metadata

Data and
Metadata
Indices

Data
Sources

Ingestion
and

Extraction

Discovery and
Integration

Cleaning

 JSON
 CSV

 Parquet

Figure 5.2: The Architecture of a Data Lake Management System [50]

of indices that facilitate data discovery using metadata and semantics.

Current data lakes provide reliable storage for datasets together with a computational framework

(such as Hadoop or Spark), along with a suite of tools for doing data governance (such as access control),

data discovery, extraction, cleaning, and integration. These tools help individual teams to use (and

create) data in a data lake. But many challenges remain. First, we are only at the beginning of being

able to exploit the work of others (the search, extraction, cleaning and integration effort of others) to

help in new uses of a data lake. How can an analysis or search done by one data scientist improve

the discovery or analysis of tables by another? Second, data lakes are currently mostly intermediate

repositories for data. Currently, this data does not become actionable until it is cleaned and integrated

into a traditional DBMS or warehouse. A grand challenge for data lake management systems is to

support on-demand query answering – meaning data discovery, extraction, cleaning, and integration

done at query time over massive collection of files that may have unknown structure, content, and data

quality. Only then would the data in data lakes become actionable.

Appendix

Proof of Proposition 2.4.2

Recall from Section 2.4.5, N|X| is the number of sets with size x in the interval [l, u]. The expected

number of false positives in the interval produced by using the effective containment thresholds is given

by:

NFP
l,u =

∑
|X|∈[l,u]

N|X| · Pr[X is FP]

where Pr[X is FP] is the probability of a set becoming a false positive given its size is |X|. The effective

containment threshold for a set with size |X| is given in Proposition 1 as:

t|X| =
(|X|+ |Q|)t∗
u+ |Q|

where |Q| is the query set size, and t∗ is the query-given containment threshold.

For any set with size |X|, its containment is bounded by min {1.0, |X|/|Q|}. Thus, given different |Q|,
the maximum and minimum containment from sets in the interval can be different, and the probability

of false positive can be different as well. We separate the proof into 5 cases.

Case 1: t∗|Q| ≤ l

Since the lower bound of the interval is greater than minimum set size required to satisfy the containment

threshold, all sets in the interval have non-zero probabilities of becoming false positives. The false positive

probability is given as

Pr[FP||X| ≥ t∗|Q|] = (t∗ − t|X|)/t∗

= 1− |X|+ |Q|
u+ |Q|

We can evaluate NFP
l,u as follows:

NFP
l,u =

∑
|X|∈[l,u]

N|X| ·
t∗ − t|X|

t∗

=
∑

|X|∈[l,u]

N|X| ·
(

1− |X|+ |Q|
u+ |Q|

)
≤

∑
|X|∈[l,u]

N|X| ·
(

1− |X|
u

)

100

Chapter 5. Conclusion 101

Case 2: tl|Q| ≤ l < t∗|Q| and t∗|Q| ≤ u

For sets in the sub-interval [l, t∗|Q|), their maximum possible containment do not satisfy the query-given

containment threshold, but satisfies the effective containment threshold. The false positive probability

of these sets becomes

Pr[FP|tlq ≤ x < t∗|Q|] = (|X|/|Q| − t|X|)/(|X|/|Q|)

= 1− t|X|
|Q|
|X|

= 1− |X|+ |Q|
u+ |Q| ·

t∗|Q|
|X|

NFP
l,u now can be evaluated as

NFP
l,u =

∑
|X|∈[l,t∗|Q|)

N|X| · Pr [FP |tl|Q| ≤ |X| < t∗|Q|] +
∑

|X|∈[t∗|Q|,u]

N|X| · Pr[FP||X| ≥ t∗|Q|]

≤
∑

|X|∈[l,u]

N|X| · Pr[FP||X| ≥ t∗|Q|]

Since |X| < t∗|Q| in the sub-interval [l, t∗|Q|), Pr [FP | tl|Q| ≤ |X| < t∗|X|] ≤ Pr[FP||X| ≥ t∗|Q|]. We

still have the inequality:

NFP
l,u ≤

∑
|X|∈[l,u]

N|X| ·
(

1− |X|
u

)

Case 3: l < tl|Q| and t∗|Q| ≤ u

Now the maximum possible containment for sets in the sub-interval [l, tl|Q|) are below the effective

containment threshold. For these sets, the false positive probability is zero

Pr[FP||X| < tl|Q|] = 0

Following the same steps as before, we can show the inequality still holds.

NFP
l,u =

∑
|X|∈[l,tl|Q|)

N|X| · Pr[FP||X| < tl|Q|] +
∑

|X|∈[tl|Q|,t∗|Q|)
N|X| · Pr[FP|tl|Q| ≤ |X| < t∗|Q|]

+
∑

|X|∈[t∗|Q|,u]

N|X| · Pr[FP||X| ≥ t∗|Q|]

≤
∑

|X|∈[l,u]

N|X| · Pr[FP||X| ≥ t∗|Q|]

≤
∑

|X|∈[l,u]

N|X| ·
(

1− |X|
u

)

Case 4: l < tl|Q| and tu|Q| ≤ u < t∗|Q|

Since the probabilities of false positives in the intervals [l, tu|Q|) and [tu|Q|, u) are both less than

Pr[FP||X| ≥ t∗|Q|], the inequality still holds, follow the same reasoning.

Chapter 5. Conclusion 102

Case 5: u < tu|Q|

The probability of false positive is 0 in the complete interval [l, u], thus the inequality still holds.

Thus Proposition 2.

Proof of Proposition 4.4.3

Recall in Section 4.4.2, Proposition 4.4.3 states that if a transformation required is expressible in the

language using operators in Θ and examples selected for learning are independent of each other, then

the learning process has a high probability of success.

To show that this is the case, we start by analyzing a simplified scenario with only two operators,

Substr and Concat. Given an input string of length SI , and an output string of length SO that are

selected as an example pair. Since only Substr and Concat are used in generating the transformation,

the desired transformation in this language is bound to be a concatenation of m substrings, where m is

the size of the transformation (or the number of operators).

Our algorithm greedily selects the best operator in each step, which is the one with the most gain

towards the target output. Let {S1, S2, ...Sm} be the sequence of substrings generated, whose concatena-

tion produces SO. We now compute the probability that one substring segment Si is correctly generated.

In each step i, the reason that it may fail is because there exists another q-gram in SI with a different

match in SO, whose length is at least |Si|. The probability that this event happens for one example

can be bounded by |SI ||SO| 1
|Σ|
|Si| 3. For k number of independent examples, denote by Pk(str) the

probability of confusing a true Substr operator with a different Substr, Pk(str) = |SI |(|SO| 1
|Σ|
|Si|)k,

which decreases exponentially in k. Note that |SI | is not raised to the power of k because all k examples

are required to have the substring at the same position, but for SO there is no restriction on starting

positions. As a result the success probability for the i-th step is 1 − |SI |(|SO| 1
|Σ|
|Si|)k, and the success

probability for a given set of k examples across m steps is bounded by
∏
i∈[m]

(
1− |SI |(|SO| 1

|Σ|
|Si|)k

)
.

Given that we try a fixed T number of random example-sets (e.g. T = 128), and the overall transfor-

mation succeeds as long as one such example set can produce the correct transformation, so the overall

success probability is

1−

1−
∏
i∈[m]

(1− Pk(str))

T

We now consider the scenario with operator Const in addition to Substr and Concat. At step i,

we may produce an incorrect Const operator, in place of a correct Substr, or a correct but different

Const. Let Pk(const) be the probability. Pk(const) = |SO|(1
|Σ|
|Si|)k, because it also fails when there

exists a constant q-gram in SO whose length is at least |Si|.
Note that Pk(str) now indicates the probability of confusing a Substr with Const and a different

Substr, which is the same as the value computed above, because the only case where it is produced

incorrectly is when the substring length exceeds that of the correct program |Si|.

3Characters are assumed to be sampled uniformly at random from Σ for simplicity of this analysis. A different

character-level distribution model can be plugged here in place of 1
|Σ|
|Si| to produce results with the same structure and

similar overall results.

Chapter 5. Conclusion 103

1−

1−
∏
i∈[m]

(1− Pk(str)− Pk(const))

T

We now describe the scenario with the addition of operators that use Split (SplitSubstr and

SplitSplitSubstr). Split can be viewed as modifying the relative positions of each input string, but

does not alter local q-grams in other ways. So in the best case it can shift the starting position of q-grams.

The probability of mistakenly producing a Split instead of others is thus Pk(split) = (|SI ||SO| 1
|Σ|
|Si|)k.

Note that compared to Pk(str) here |SI | is raised to the power of k, because starting position of input

string is no longer constrained to be the same.

Combining, the success probability is lower bounded by

1−

1−
∏
i∈[m]

(1− Pk(str)− Pk(const)− Pk(split))

T

which can be rewritten as

1−

1−
∏
i∈[m]

(
1−

(
1 + (|SI |+ |SI |k)|SO|k

) 1

|Σ|
k|Si|

)T

The failure probability becomes exponentially small with more number of attempts T . The failure

probability generally decreases when using more number of examples k, but increases with m that

indicates more complex programs.

For illustration, we plug in numbers for concreteness. The program generated in Example 4.4.6 for

tables in Figure 4.1 has the following parameters: |SI | = 29, |SO| = 19 + 4 = 17 (we pick the longest

input/output, in this case the fourth row to bound the probability). Value of m = 3 since the desired

program has 3 logical operators, and |S1| = 12, |S2| = 4, |S3| = 1. Assume we use 3 examples to generate

programs so k = 3, and |Σ| = 52. Even with T = 1 the success probability is ≈ 0.999 4. When failure

probability of individual trials is more significant, with T repeated independent trials we can quickly

reduce the failure probability at exponential rate, and thus produce a high overall success rate.

4internally when multiple operators can produce the same output sequence with the same score, Const will be picked
over other operators for the simplicity of its explanation. Thus the last operator does not have a confusion probability and
will succeed with probability of 1.

Bibliography

[1] Arvind Arasu, Venkatesh Ganti, and Raghav Kaushik. Efficient exact set-similarity joins. PVLDB,

pages 918–929, 2006.

[2] David Aumueller, Hong Hai Do, Sabine Massmann, and Erhard Rahm. Schema and ontology

matching with COMA++. In SIGMOD, pages 906–908, 2005.

[3] Jana Bauckmann, Ulf Leser, Felix Naumann, and Veronique Tietz. Efficiently detecting inclusion

dependencies. In ICDE, pages 1448–1450, 2007.

[4] Mayank Bawa, Tyson Condie, and Prasanna Ganesan. LSH forest: Self-tuning indexes for similarity

search. In World Wide Web Conference, pages 651–660, 2005.

[5] Roberto J. Bayardo, Yiming Ma, and Ramakrishnan Srikant. Scaling up all pairs similarity search.

In WWW, pages 131–140, 2007.

[6] Alexander Behm, Chen Li, and Michael J. Carey. Answering approximate string queries on large

data sets using external memory. In ICDE, pages 888–899, 2011.

[7] Christian Biemann. Structure Discovery in Natural Language. Theory and Applications of Natural

Language Processing. Springer, 2012.

[8] Alexander Bilke and Felix Naumann. Schema matching using duplicates. In ICDE, pages 69–80,

2005.

[9] A. Broder. On the resemblance and containment of documents. In Compression and Complexity of

Sequences, pages 21–28, 1997.

[10] Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse, and Geoffrey Zweig. Syntactic clustering

of the web. In Computer Networks and ISDN Systems, 1997.

[11] Michael J. Cafarella, Alon Y. Halevy, Daisy Zhe Wang, Eugene Wu, and Yang Zhang. Webtables:

exploring the power of tables on the web. PVLDB, 1(1):538–549, 2008.

[12] Moses S. Charikar. Similarity estimation techniques from rounding algorithms. In STOC, pages

380–388, 2002.

[13] Surajit Chaudhuri, Venkatesh Ganti, and Raghav Kaushik. A primitive operator for similarity joins

in data cleaning. In ICDE, page 5, 2006.

[14] H. Chernoff. A note on an inequality involving the normal distribution. Annals of Probability, 1981.

104

Bibliography 105

[15] Xu Chu, Yeye He, Kaushik Chakrabarti, and Kris Ganjam. Tegra: Table extraction by global record

alignment. In Proceedings of SIGMOD, 2015.

[16] Joel Coffman and Alfred C Weaver. An empirical performance evaluation of relational keyword

search techniques. In TKDE, pages 30–42, 2014.

[17] Edith Cohen and Haim Kaplan. Summarizing data using bottom-k sketches. In PODC, pages

225–234, 2007.

[18] CrowdFlower. 2017 data scientist report. https://visit.crowdflower.com/

WC-2017-Data-Science-Report_LP.html, 2017.

[19] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni. Locality-sensitive hashing

scheme based on p-stable distributions. In SCG, pages 253–262, 2004.

[20] Dong Deng, Raul Castro Fernandez, Ziawasch Abedjan, Sibo Wang, Michael Stonebraker, Ahmed K.

Elmagarmid, Ihab F. Ilyas, Samuel Madden, Mourad Ouzzani, and Nan Tang. The data civilizer

system. In CIDR, 2017.

[21] Dong Deng, Albert Kim, Samuel Madden, and Michael Stonebraker. Silkmoth: An efficient method

for finding related sets with maximum matching constraints. PVLDB, 10(10):1082–1093, 2017.

[22] Dong Deng, Guoliang Li, Jianhua Feng, and Wen-Syan Li. Top-k string similarity search with

edit-distance constraints. In ICDE, pages 925–936, 2013.

[23] Dong Deng, Guoliang Li, Shuang Hao, Jiannan Wang, and Jianhua Feng. Massjoin: A mapreduce-

based method for scalable string similarity joins. In ICDE, pages 340–351, 2014.

[24] Songyun Duan, Achille Fokoue, Oktie Hassanzadeh, Anastasios Kementsietsidis, Kavitha Srinivas,

and Michael J. Ward. Instance-based matching of large ontologies using locality-sensitive hashing.

In ISWC, pages 49–64, 2012.

[25] Hazem Elmeleegy, Jayant Madhavan, and Alon Halevy. Harvesting relational tables from lists on

the web. The VLDB Journal, 20(2):209–226, April 2011.

[26] Raul Castro Fernandez, Ziawasch Abedjan, Famien Koko, Gina Yuan, Samuel Madden, and Michael

Stonebraker. Aurum: A data discovery system. In ICDE, pages 1001–1012, 2018.

[27] Raul Castro Fernandez, Essam Mansour, Abdulhakim Ali Qahtan, Ahmed K. Elmagarmid, Ihab F.

Ilyas, Samuel Madden, Mourad Ouzzani, Michael Stonebraker, and Nan Tang. Seeping semantics:

Linking datasets using word embeddings for data discovery. In ICDE, pages 989–1000, 2018.

[28] Fabian Fier, Nikolaus Augsten, Panagiotis Bouros, Ulf Leser, and Johann-Christoph Freytag. Set

similarity joins on mapreduce: An experimental survey. PVLDB, 11(10):1110–1122, 2018.

[29] Niloy Ganguly, Andreas Deutsch, and Animesh Mukherjee. Dynamics on and of complex networks:

Applications to biology, computer science, and the social sciences. 2009.

[30] Hugh G. Gauch. Scientific Method in Practice. Cambridge University Press, 2003.

[31] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity search in high dimensions via hashing.

In VLDB, pages 518–529, 1999.

https://visit.crowdflower.com/WC-2017-Data-Science-Report_LP.html
https://visit.crowdflower.com/WC-2017-Data-Science-Report_LP.html

Bibliography 106

[32] William R. Harris and Sumit Gulwani. Spreadsheet table transformations from examples. In

SIGPLAN, 2011.

[33] Oktie Hassanzadeh, Ken Q. Pu, Soheil Hassas Yeganeh, Renée J. Miller, Lucian Popa, Mauricio A.

Hernández, and Howard Ho. Discovering linkage points over web data. PVLDB, 6(6):444–456, 2013.

[34] Vagelis Hristidis and Yannis Papakonstantinou. Discover: Keyword search in relational databases.

In VLDB, pages 670–681, 2002.

[35] Andrew Ilyas, Joana M. F. da Trindade, Raul Castro Fernandez, and Samuel Madden. Extracting

syntactical patterns from databases. In ICDE, pages 41–52, 2018.

[36] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing the curse of

dimensionality. In STOC, pages 604–613, 1998.

[37] Zhongjun Jin, Michael R. Anderson, Michael Cafarella, and H. V. Jagadish. Foofah: Transforming

data by example. In SIGMOD, 2017.

[38] Mehdi Kargar, Aijun An, Nick Cercone, Parke Godfrey, Jaroslaw Szlichta, and Xiaohui Yu. Meanks:

meaningful keyword search in relational databases with complex schema. In SIGMOD, pages 905–

908, 2014.

[39] Oliver Lehmberg and Christian Bizer. Stitching web tables for improving matching quality. PVLDB,

10(11):1502–1513, 2017.

[40] Oliver Lehmberg, Dominique Ritze, Robert Meusel, and Christian Bizer. A large public corpus of

web tables containing time and context metadata. In WWW, pages 75–76, 2016.

[41] Oliver Lehmberg, Dominique Ritze, Petar Ristoski, Robert Meusel, Heiko Paulheim, and Christian

Bizer. The mannheim search join engine. Journal of Web Semantics, 35:159–166, 2015.

[42] Chen Li, Jiaheng Lu, and Yiming Lu. Efficient merging and filtering algorithms for approximate

string searches. In ICDE, pages 257–266, 2008.

[43] Guoliang Li, Dong Deng, Jiannan Wang, and Jianhua Feng. PASS-JOIN: A partition-based method

for similarity joins. PVLDB, 5(3):253–264, 2011.

[44] Girija Limaye, Sunita Sarawagi, and Soumen Chakrabarti. Annotating and searching web tables

using entities, types and relationships. Proc. VLDB Endow., 3(1-2):1338–1347, September 2010.

[45] Udi Manber and Eugene W. Myers. Suffix arrays: A new method for on-line string searches. SIAM

J. Comput., 22(5):935–948, 1993.

[46] Willi Mann, Nikolaus Augsten, and Panagiotis Bouros. An empirical evaluation of set similarity

join techniques. PVLDB, 9(9):636–647, 2016.

[47] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to Information

Retrieval. Cambridge University Press, 2008.

[48] Fabien De Marchi, Stéphane Lopes, and Jean-Marc Petit. Unary and n-ary inclusion dependency

discovery in relational databases. J. Intell. Inf. Syst., 32(1):53–73, 2009.

Bibliography 107

[49] Ahmed Metwally and Christos Faloutsos. V-smart-join: A scalable mapreduce framework for all-pair

similarity joins of multisets and vectors. PVLDB, 5(8):704–715, 2012.

[50] Fatemeh Nargesian, Erkang Zhu, Renée J. Miller, Ken Q. Pu, and Patricia C. Arocena. Data lake

management: Challenges and opportunities (too appear). PVLDB, 12, 2019.

[51] Fatemeh Nargesian, Erkang Zhu, Ken Q. Pu, and Renée J. Miller. Table union search on open data.

PVLDB, 11(7):813–825, 2018.

[52] Thorsten Papenbrock, Sebastian Kruse, Jorge-Arnulfo Quiané-Ruiz, and Felix Naumann. Divide &

conquer-based inclusion dependency discovery. PVLDB, 8(7):774–785, 2015.

[53] Rakesh Pimplikar and Sunita Sarawagi. Answering table queries on the web using column keywords.

In VLDB, volume 5, pages 908–919, 2012.

[54] Erhard Rahm and Philip A. Bernstein. A survey of approaches to automatic schema matching. The

VLDB Journal, 10(4):334–350, 2001.

[55] J Rissanen. Modeling by shortest data description. Automatica, 1978.

[56] Chuitian Rong, Chunbin Lin, Yasin N. Silva, Jianguo Wang, Wei Lu, and Xiaoyong Du. Fast and

scalable distributed set similarity joins for big data analytics. In ICDE, pages 1059–1070, 2017.

[57] Akash Das Sarma, Yeye He, and Surajit Chaudhuri. Clusterjoin: A similarity joins framework using

map-reduce. PVLDB, 7(12):1059–1070, 2014.

[58] Anish Das Sarma, Lujun Fang, Nitin Gupta, Alon Y. Halevy, Hongrae Lee, Fei Wu, Reynold Xin,

and Cong Yu. Finding related tables. In SIGMOD, pages 817–828, 2012.

[59] Anshumali Shrivastava and Ping Li. In defense of minhash over simhash. In AISTATS, pages

886–894, 2014.

[60] Anshumali Shrivastava and Ping Li. Asymmetric minwise hashing for indexing binary inner products

and set containment. In WWW, pages 981–991, 2015.

[61] Yasin N. Silva and Jason M. Reed. Exploiting mapreduce-based similarity joins. In SIGMOD, pages

693–696, 2012.

[62] Fabian Tschirschnitz, Thorsten Papenbrock, and Felix Naumann. Detecting inclusion dependencies

on very many tables. ACM Trans. Database Syst., 42(3):18:1–18:29, 2017.

[63] Petros Venetis, Alon Halevy, Jayant Madhavan, Marius Paşca, Warren Shen, Fei Wu, Gengxin

Miao, and Chung Wu. Recovering semantics of tables on the web. Proc. of VLDB Endowment

(PVLDB), pages 528–538, 2011.

[64] Rares Vernica, Michael J. Carey, and Chen Li. Efficient parallel set-similarity joins using mapreduce.

In SIGMOD, pages 495–506, 2010.

[65] Jiannan Wang, Guoliang Li, and Jianhua Feng. Can we beat the prefix filtering?: an adaptive

framework for similarity join and search. In SIGMOD, pages 85–96, 2012.

Bibliography 108

[66] Jin Wang, Guoliang Li, Dong Deng, Yong Zhang, and Jianhua Feng. Two birds with one stone:

An efficient hierarchical framework for top-k and threshold-based string similarity search. In ICDE,

pages 519–530, 2015.

[67] Xubo Wang, Lu Qin, Xuemin Lin, Ying Zhang, and Lijun Chang. Leveraging set relations in exact

set similarity join. PVLDB, 10(9):925–936, 2017.

[68] Robert H. Warren and Frank Wm. Tompa. Multi-column substring matching for database schema

translation. PVLDB, pages 331–342, 2006.

[69] Chuan Xiao, Wei Wang, Xuemin Lin, and Haichuan Shang. Top-k set similarity joins. In ICDE,

pages 916–927, 2009.

[70] Chuan Xiao, Wei Wang, Xuemin Lin, and Jeffrey Xu Yu. Efficient similarity joins for near duplicate

detection. In WWW, pages 131–140, 2008.

[71] Mohamed Yakout, Kris Ganjam, Kaushik Chakrabarti, and Surajit Chaudhuri. Infogather: Entity

augmentation and attribute discovery by holistic matching with web tables. In SIGMOD, pages

97–108, 2012.

[72] Erkang Zhu, Yeye He, and Surajit Chaudhuri. Auto-join: Joining tables by leveraging transforma-

tions. PVLDB, 10(10):1034–1045, 2017.

[73] Erkang Zhu, Dong Deng Fatemeh Nargesian, and Renée J. Miller. JOSIE: Overlap set similarity

search for finding joinable tables in data lakes (too appear). In SIGMOD, 2019.

[74] Erkang Zhu, Fatemeh Nargesian, Ken Q. Pu, and Renée J. Miller. LSH ensemble: Internet-scale

domain search. PVLDB, 9(12):1185–1196, 2016.

[75] Erkang Zhu, Ken Q. Pu, Fatemeh Nargesian, and Renée J. Miller. Interactive navigation of open

data linkages. PVLDB, 10(12):1837–1840, 2017.

	Introduction
	On Data Lakes, Tables, and Open Data
	On Joining Tables in Data Lakes
	On Searching for Joinable Tables
	On Joins with Transformations
	On Contributions

	LSH Ensemble: Approximate Joinable Table Search
	Metric for Joinable Tables
	Containment as Relevance Measure
	Jaccard vs. Containment

	The Threshold Containment Search Problem
	Locality Sensitive Hashing for Sets
	Minwise Hashing
	Locality Sensitive Hashing
	Asymmetric Minwise Hashing

	The LSH Ensemble Index
	Translating Containment to Jaccard
	Jaccard Similarity Filtering for Containment
	Partitioning to Reduce False Positives
	A Cost Model for Containment Search
	Estimation of False Positives
	Optimal Partitioning
	Threshold Containment Search Using Dynamic LSH

	Experiments
	Data Lakes
	Benchmarks
	Algorithms
	Accuracy
	Query Performance
	Scalability

	Related Work
	Summary

	JOSIE: Exact Top-K Joinable Table Search
	The Top-K Overlap Set Similarity Search Problem
	Inverted Index, Prefix Filter, and Position Filter
	Inverted Index and Dictionary
	Prefix Filter
	Token Ordering and Position Filter

	A New Framework
	To Read or Not to Read
	Reading Candidates
	Reading Posting Lists
	An Adaptive Algorithm

	A Practical Search Engine
	Distinct Posting Lists
	Indexing Data Lakes
	Estimating Costs

	Experiments
	Data Lakes
	Query Benchmarks
	Setup
	Algorithms
	Open Data Results
	Webtable Results
	Comparison with LSH Ensemble
	Measuring Query Memory Footprint

	Related Work
	Summary

	Auto-Join: Smart Join with Transformations
	Equi-Join Is Not Enough
	Related Work
	Problem Overview
	Auto-Join by Transformations
	Finding Joinable Row Pairs
	Transformation Learning
	Join with Composite Key Columns

	Scale Auto-Join to Large Tables
	Constrained Fuzzy Join
	Experiments
	Benchmark Datasets
	Methods Compared
	Quality Comparison
	Scalability Evaluation

	Summary

	Conclusion
	Other Contributions
	A Joinable Table Search System
	Open Source

	Lessons Learned
	The Two-Stage Design Principle of Retrieval Processes
	Evaluate Using Real Data
	Use Simple Methods to Optimize for Performance
	Rare Signals are Strong Signals

	Next Step: A Self-Service Data Discovery System
	Generalized Joinable Table Search
	Unionable Table Search

	An Outlook on Data Lake ManagementThis section will be published in ``Data Lake Management: Challenges and Opportunities'' datalaketutorial, a collaboration with Fatemeh Nargesian, Renée J. Miller, Ken Q. Pu, and Patricia C. Arocena.

	Bibliography

